## Spring 2004; E4215: Analog Filter Synthesis and Design; HW4

Nagendra Krishnapura (nkrishna@vitesse.com)

due on 25 Feb. 2004



Figure 1:

1. Calculate  $V_o/V_i$  of the two circuits shown in Fig. 1. Sketch the magnitude response of the two, overlaid on the same axes. What is the effect of the gain on the integrator?



Figure 2:

- 2. Calculate  $V_o/V_i$  of the filter in Fig. 2. Calculate the quality factor Q and the resonant frequency  $\omega_p$  of the filter.
- 3. Design a second order passive lowpass RLC notch filter with  $Q=1/\sqrt{2},$   $\omega_p=2\pi\times 1\,\mathrm{MHz}$  and a transmission zero at  $\omega_z=2\pi\times 10\,\mathrm{MHz}.$  Use the topology in Fig. 3 with  $C_1+C_2=1\,\mathrm{nF}.$
- 4. Calculate the transfer functions from inputs  $\{V_{i1,gm}, V_{i1,C}, V_{i2,gm}, V_{i2,C}\}$  to the outputs  $\{V_1, V_2\}$ . When calculating the effect of one input, set all other inputs to zero. Generate a table



Figure 3:



Figure 4:

similar to the one given in the handout "Transfer functions realizable in a biquad".