Spring 2004; E4215: Analog Filter Synthesis and Design; HW1

Nagendra Krishnapura (nkrishna@ vitesse.com)

due on 4 Feb. 2004

(a)

(b)

Figure 1:

1. (5 pts.) For the circuits in Fig. 1(a) and Fig. 1(b), evaluate the transfer function $H(s)=$ $V_{o}(s) / V_{i}(s)$, and the impulse response $h(t)$ corresponding to $H(s)$. Approximately sketch the magnitude and phase of $H(s)$ (Bode Plot). What is the difference between the two circuits?
2. (5 pts.) In the circuits in Fig. 1(a) and Fig. 1(b), evaluate the current $i_{o}(t)$ driven from the opamp when the input $v_{i}(t)=1 \mathrm{~V} \cos (t / R C)$. What is the difference between the two circuits?
3. (5 pts.) Evaluate the transfer function $H(s)=$

Figure 2:
$V_{o}(s) / V_{i}(s)$ in Fig. 2. Calculate the dc gain, poles and zeros of $H(s)$.
4. (5 pts.) Write the expressions for the transfer function $H(s)=V_{o}(s) / V_{i}(s)$ for the circuits in Fig. 3(a) and Fig. 3(b). Sketch the Bode plots assuming $R_{1} C_{1}=4 R_{2} C_{2}$.
5. (5 pts.) The circuit in Fig. 3(b) is driven by a pulse with an amplitude 1 V and lasting T seconds (Fig. 3(c)). Assuming $T=R_{1} C_{1}$, sketch the intermediate voltage $v_{x}(t)$. Sketch the output voltage $v_{o}(t)$ assuming that $R_{2} C_{2}=R_{1} C_{1}$.

(a)

(b)

(c)

Figure 3:

