E4215: Analog Filter Synthesis and Design Frequently used numerical approximations

Nagendra Krishnapura (nkrishnapura@mltc.com)

12 Feb. 2003

While calculating the effects of nonidealities of real components on the transfer function of a filter, following aproximations may be used to simplify the expressions assuming that the deviations are small.

1 For small quantities

$$
\begin{aligned}
(1+x)^{\alpha} \approx & 1+\alpha x \\
& |x| \ll 1,|\alpha x| \ll 1 \\
& 1.1^{2}=1.21 ;(1+0.1)^{2} \approx 1.2 ;-0.83 \% \text { error } \\
\frac{1}{1+z} \approx & 1-z \\
& |y| \ll 1, \text { use } \alpha=-1 \text { in previous expression } \\
& \frac{1}{1.1}=0.90909 ; \frac{1}{1+0.1} \approx 0.9 ;-1 \% \text { error } \\
(1+x)(1+y) \approx & 1+x+y \\
& |x| \ll 1,|y| \ll 1 \text { means } x y \text { is negligible compared to } 1, x, y
\end{aligned}
$$

The last expression indicates that if two factors contribute to 1% deviation, say in the pole frequency, the combined effect can be expected to be 2% in the worst case. In general, for small deviations, the deviation due to each factor can be calculated separately and added up.

$$
\begin{aligned}
\frac{1+x}{1+z} \approx & 1+x-z \\
& |x| \ll 1,|z| \ll 1 \text { combine last two; } y=-z
\end{aligned}
$$

This suggests that if two factors cause equal and opposite deviations, there $m a y^{1}$ be an opportunity to cancel the deviations by combining the two factors in the same circuit.

$$
\begin{aligned}
\exp (x) \approx & 1+x \\
& |x| \ll 1
\end{aligned}
$$

[^0]$$
\ln (1+x) \approx x
$$

2 Quadratic equation

$a x^{2}+b x+c=0$ has two roots

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

which are cumbersome to calculate in general. Simple approximations are possible when one of the roots is much larger than the other $\left(\left|x_{1}\right| \gg\left|x_{2}\right|\right)$. In $f(x)=a x^{2}+b x+c$, the first two terms dominate when x is "large" and the last two, when x is small. So, to calculate the larger root x_{1},

$$
\begin{aligned}
a x_{1}^{2}+b x_{1} & \approx 0 \\
x_{1} & \approx-\frac{b}{a}, 0\left(0 \text { not permissible: } x_{1} \text { is assumed to be large }\right)
\end{aligned}
$$

and the smaller root x_{2}

$$
\begin{aligned}
b x_{2}+c & \approx 0 \\
x_{2} & \approx-\frac{c}{b}
\end{aligned}
$$

Hence the algorithm:

- Given a quadratic equation $a x^{2}+b x+c=0$, calculate $x_{1}=-b / a$ and $x_{2}=-c / b$.
- Verify if $\left|x_{1}\right| \gg\left|x_{2}\right|$. If true, they are the roots. If not, recalculate exactly.

This approximation clearly doesn't work when the roots are complex because, then, $\left|x_{1}\right|=\left|x_{2}\right|$.
e.g. $x^{2}+11 x+10$ yields $-10,-1$ exactly and $-11,-10 / 11$ using the approximation, which are correct to 10%.

[^0]: ${ }^{1}$ This sort of cancellation technique should always be investigated for reliability

