E4215: Analog Filter Synthesis and Design: Midterm

Nagendra Krishnapura (nkrishnapura@mltc.com)

11 Mar. 2003

90 minutes; 3 problems; 25 pts.; Closed book; No calculators;

Figure 1: Circuit for problem 1.

1. (a) (4 pts.) Derive the transfer functions $V_{1}(s) / V_{i}(s)$ and $V_{2}(s) / V_{i}(s)$ for the circuit in Fig. 1. Assume ideal opamps.
(b) (3 pts.) Sketch the magnitude and phase responses of $V_{1}(s) / V_{i}(s)$ and $V_{2}(s) / V_{i}(s)$ for $Q=$ $5, k=2$.
(c) (3 pts.) How would you modify the circuit so that a second order low pass filter with de gain=1 is realized between V_{i} and V_{3} ? What is the transfer function $V_{3}(s) / V_{i}(s)$ for this modified circuit?
2. A filter with an input $V_{i n}(t)=\cos (1 \mathrm{Grad} / \mathrm{s} t)+\cos (10 \mathrm{Grad} / \mathrm{s} t)+\cos (100 \mathrm{Grad} / \mathrm{s} t)$ should have an output $V_{\text {out }}(t)=a_{1} \cos \left(1 \mathrm{Grad} / \mathrm{s} t+\phi_{1}\right)+a_{10} \cos \left(10 \mathrm{Grad} / \mathrm{s} t+\phi_{10}\right)+a_{100} \cos \left(100 \mathrm{Grad} / \mathrm{s} t+\phi_{100}\right)$ where $a_{1} \ll a_{10}, a_{100} \ll a_{10}$.
(a) (1 pt.) What is the required type of filter?
(b) (1 pt.) Give a second order transfer function (with general parameters) which realizes a filter of the required type.
(c) (2 pts.) Choose the parameter(s) of the transfer function such that $a_{1} / a_{10}=10^{-2}$.
(d) (4 pts.) Using a 2 nH inductor, design a passive second order filter which realizes the transfer function determined above. Assume that the voltage source driving this filter has an output resistance of 50Ω.

Figure 2: Circuit for problem 3. All transconductances are of an identical value; $g_{m}=1 \mathrm{mS}$.
(e) (2 pts.) What is the ratio a_{100} / a_{10} with the filter designed above?
3. (a) (3 pts.) Derive the transfer functions $V_{1}(s) / V_{i}(s)$ and $V_{2}(s) / V_{i}(s)$ for the circuit in Fig. 2. All transconductances are of an identical value; $g_{m}=1 \mathrm{mS}$.
(b) (2 pts.) Where are the poles and zeros of $V_{2}(s) / V_{i}(s)$ (give the correct signs)? Sketch the magnitude and phase responses of $V_{2}(s) / V_{i}(s)$.

Notes:

- It is generally less confusing to carry out the calculations analytically and to substitute the numerical values at the end.
- Use judicious approximations to simplify numerical calculations. e.g. $1+\delta \approx 1$ if δ is small, say 0.01 . You can then verify if the approximation is valid by substituting back the answer so obtained.

