E4215: Analog Filter Synthesis and Design: HW3

Nagendra Krishnapura (nkrishnapura@mltc.com)

due on 11 Feb. 2003

In addition to the problems here, problems 1, 2, 3 from HW2 are also due on 11 Feb. 2003.

Figure 1:

 (9 pts.) The opamps in Fig. 1 have an input referred offset voltage Vos, but are otherwise ideal (A0 = ∞). For Fig. 1(a), derive the expression relating the output V_o to the input V_{in1} and the offset V_{os} . Draw the dc transfer characteristics V_o vs. V_{in1} including the effect of offset assuming that $V_{os} > 0$. Show the input referred offset and the output offset of the amplifier in Fig. 1(a) on this plot. (Hint: In a circuit with multiple inputs, try using superposition).

If the standard deviation of V_{os} is $\sigma = 5 \text{ mV}$, what is the standard deviation of the input referred offset and the output offset of the amplifier in Fig. 1(a).

What is the net output offset (in the output V_o) of the circuit in Fig. 1(b)? (Hint: Use the results related to Fig. 1(a) to determine V_{o1} and V_{o2} . Relate V_o to V_{o1} and V_{o2})

- (5 pts.) In Fig. 2(a), determine V_{p,max}, the maximum value of V_p such that the output v_o(t) is sinusoidal. The opamp has the characteristic shown in Fig. 2(b) (The slope of the vertical part is ∞. Sketch v_o(t) when V_p = V_{p,max}/2 and when V_p = 2V_{p,max}
- 3. (3 pts.) In Fig. 3, $v_o = f(v_i) = v_i + a_2 v_i^2 + a_3 v_i^3$. If $v_i = V_p \cos(\omega t)$, express $v_o(t)$ as a sum of sinusoids. Find the ratio of the 2nd and 3rd harmonic amplitudes to that of the fundamental. If $a_2 = 10^{-3} V^{-1}$, $a_3 = 10^{-3} V^{-2}$, find the input peak V_p such that the second harmonic is 60 dB below the fundamental. Repeat the exer-

Figure 3:

cise for the third harmonic.

4. (3 pts.) Assuming ideal transconductors¹, derive expressions relating V_o to V_i in Fig. 4(a) and to V_{i1} and V_{i2} in Fig. 4(b).

Repeat for Fig. 4(a) assuming that the transconductor g_{mx} has an output resistance r_{ox} and input and output capacitances C_{ix} , C_{ox} . $x = \{1, 2\}$ for the two transconductors in Fig. 4(a).

Figure 4:

¹voltage controlled current source