E4215: Analog Filter Synthesis and Design: HW3

Nagendra Krishnapura (nkrishnapura@mltc.com)

due on 11 Feb. 2003

In addition to the problems here, problems 1, 2, 3 from HW2 are also due on 11 Feb. 2003.

(a)

(b)

Figure 1:

1. (9 pts.) The opamps in Fig. 1 have an input referred offset voltage $V_{o s}$, but are otherwise ideal $\left(A_{0}=\infty\right)$. For Fig. 1(a), derive the ex-
pression relating the output V_{o} to the input $V_{i n 1}$ and the offset $V_{o s}$. Draw the dc transfer characteristics V_{o} vs. $V_{i n 1}$ including the effect of offset assuming that $V_{o s}>0$. Show the input referred offset and the output offset of the amplifier in Fig. 1(a) on this plot. (Hint: In a circuit with multiple inputs, try using superposition).

If the standard deviation of $V_{o s}$ is $\sigma=5 \mathrm{mV}$, what is the standard deviation of the input referred offset and the output offset of the amplifier in Fig. 1(a).

What is the net output offset (in the output V_{o}) of the circuit in Fig. 1(b)? (Hint: Use the results related to Fig. 1(a) to determine $V_{o 1}$ and $V_{o 2}$. Relate V_{o} to $V_{o 1}$ and $V_{o 2}$)
2. (5 pts.) In Fig. 2(a), determine $V_{p, \text { max }}$, the maximum value of V_{p} such that the output $v_{o}(t)$ is sinusoidal. The opamp has the characteristic shown in Fig. 2(b) (The slope of the vertical part is ∞. Sketch $v_{o}(t)$ when $V_{p}=V_{p, \max } / 2$ and when $V_{p}=2 V_{p, \max }$
3. (3 pts.) In Fig. 3, $v_{o}=f\left(v_{i}\right)=v_{i}+a_{2} v_{i}^{2}+$ $a_{3} v_{i}^{3}$. If $v_{i}=V_{p} \cos (\omega t)$, express $v_{o}(t)$ as a sum of sinusoids. Find the ratio of the $2^{\text {nd }}$ and $3^{\text {rd }}$ harmonic amplitudes to that of the fundamental.

If $a_{2}=10^{-3} \mathrm{~V}^{-1}, a_{3}=10^{-3} \mathrm{~V}^{-2}$, find the input peak V_{p} such that the second harmonic is 60 dB below the fundamental. Repeat the exer-

(b)

Figure 2:

Figure 3:
cise for the third harmonic.
4. (3 pts.) Assuming ideal transconductors ${ }^{1}$, derive expressions relating V_{o} to V_{i} in Fig. 4(a) and to $V_{i 1}$ and $V_{i 2}$ in Fig. 4(b).

Repeat for Fig. 4(a) assuming that the transconductor $g_{m x}$ has an output resistance $r_{o x}$ and input and output capacitances $C_{i x}, C_{o x} . \quad x=$ $\{1,2\}$ for the two transconductors in Fig. 4(a).

(a)

(b)

Figure 4:

[^0]
[^0]: ${ }^{1}$ voltage controlled current source

