E4215: Analog Filter Synthesis and Design: HW1

Nagendra Krishnapura (nkrishnapura@mltc.com)

due on 28 Jan. 2003

Figure 1:

1. (5 pts.) For the circuits in Fig. 1(a) and Fig. 1(b), evaluate the transfer function $H(s)=$ $V_{o}(s) / V_{i}(s)$, and the impulse response $h(t)$ corresponding to $H(s)$. Approximately sketch the magnitude and phase of $H(s)$ (Bode Plot). What is the difference between the two circuits?
2. (5 pts.) In the circuits in Fig. 1(c) and Fig. 1(d), evaluate the current $i_{i}(t)$ through the input voltage source. Evaluate the average power dissipated in the voltage source and the resistor. What is the difference between the two circuits? Note: Average power dissipated in an element with a voltage $v(t)$ across it and a current $i(t)$ through it (see Fig. 1(e)) is given by

$$
P=\frac{1}{T} \int_{0}^{T} v(t) i(t) d t
$$

3. (5 pts.) Write the expressions for the transfer function $H(s)=V_{o}(s) / V_{i}(s)$ for the circuits in

Figure 2:

Fig. 2(a) and Fig. 2(b). Sketch the Bode plots assuming $R_{1} C_{1}=4 R_{2} C_{2}$.
4. (5 pts.) The circuit in Fig. 2(b) is driven by a pulse with an amplitude 1 V and lasting T seconds (Fig. 2(c)). Assuming $T=R_{1} C_{1}$, sketch the intermediate voltage $v_{x}(t)$. Sketch the output voltage $v_{o}(t)$ assuming that $R_{2} C_{2}=R_{1} C_{1}$.

