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Consider a chargeQ at the origin. The field due to that charge is
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Another chargeq is brought along an arbitrary path to a point~r.
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The work done to bring the charge to its final point is given by
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The last integral is really overr(~s). However, the integrand is a perfect derivitive,
and the integral can be performed directly to yield
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Thus the result is not a function of the path that got us there.
If you look at the derivation, any force that had the form~F = f (r)r̂ would have

yielded the same independence of path. Such forces are called central forces and are
important for this reason. From a vector calculus point of view, they are force fields that
have zero curl (try it out). Thus, given any two pointsP andQ, we can apply Stoke’s
Theorem to a closed loop consisting of an arbitrary path fromP to Q and another
arbitrary path fromQ to P.Z Q
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which means that the integral is path independent:Z Q
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Thus, it is the central nature of Coloumb’s Law that yields∇×~E = 0 and permits us to
derive~E from a scalar fieldφ.
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