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We start with the wave equation in 3 dimensions:

∇
(

∇ ·~E
)
−∇2~E =−ω2µε~E

which has the solution

~E(~r, t) =
ZZZ [

~A(~k)ej(kct−~k·~r) +~B(~k)ej(−kct−~k·~r)
]

d3k (1)

Suppose we are given that att = 0,

~E = 2sin(k0z) x̂+3cos(k1y) ẑ

η~H = cos(k1y) x̂−sin(k2x) ŷ

How do we find the fields at later time? Att = 0 we have

~E =
ZZZ [

~A(~k)ej(−~k·~r) +~B(~k)ej(−~k·~r)
]

d3k

and we have from Faraday’s law that

~H =−∇×~E
± jωµ

~H =
ZZZ [

~k×~A(~k)
ωµ

ej(−~k·~r)−
~k×~B(~k)

ωµ
ej(−~k·~r)

]
d3k

where the minus sign comes from the time derivitive. We can also write this as

η~H =
ZZZ [

k̂×~Aej(−~k·~r)− k̂×~Bej(−~k·~r)
]

d3k

If ~A and~B had constant directions, clearly, we can write from Eq. 1

~E(~r, t) = ~f (~k ·~r −kct)+~g(~k ·~r +kct)

Then, the magnetic field is given by

~H(~r, t) =
1
η

[
k̂×~f (~k ·~r −kct)− k̂×~g(~k ·~r +kct)

]
Then,

~E× ~H =
1
η

(
~f +~g

)
×

(
k̂×

(
~f −~g

))
=

1
η

[
~f ×

(
k̂×~f

)
−~g×

(
k̂×~g

)]
1



where we have ignored the cross terms assuming them to have zero mean. For a uni-
form medium, the fields are perpendicular to~k, and the result is

~f ×
(
~k×~f

)
= εi jl x̂i f j (εlmnkm fn)

= (δimδ jn−δinδ jm) x̂i f jkm fn

= ~k| f |2−~f
(
~f ·~k

)
= ~k| f |2

So,

~E× ~H =
k̂
η

(
| f |2−|g|2

)
as expected. The net flux of power along~k is the difference in the power flux in the
forward going wave and the backward going wave.

Now consider the initial conditions. There are only threek values present, namely
k0ẑ, k1ŷ andk2x̂. The directions are got from the multiplying coordinate, since it has
to come out of~k ·~r. Since the equation is linear, we can break the problem into three
problems, one in eachk value.

k0ẑ: ~E = 2sin(k0z) x̂, ~H = 0 (~H must be along ˆz× x̂ = ŷ)

k1ŷ: ~E = 3cos(k1y) ẑ, η~H = cos(k1y) x̂ (The directions of~E and~H are consistent with
each other)

k2x̂: ~E = 0, η~H =−sin(k2x) ŷ (~E must be along ˆz, so that ˆx× ẑ=−ŷ)

We now solve these problems in turn.

1. For k0ẑ: Since~H is zero att = 0, we requireA−B = 0, i.e.,A(k0) = B(k0) and
A(−k0) = B(−k0). By inspection we can write

~E(~r, t) = (sin(k0z−ωt)+sin(k0z+ωt)) x̂

Then, the magnetic field is given by

η~H(~r, t) = (sin(k0z−ωt)−sin(k0z+ωt)) ŷ

2. For k2x̂: η~H = −sin(k2x) ŷ. ~E must be along ˆz, and is zero att = 0. Hence,
~A(k2) =−~B(k2). Again, by inspection, we can write

η~H(~r, t) = (−sin(k2x−ωt)−sin(k2x+ωt))
ŷ
2

with
~E(~r, t) = (sin(k2x−ωt)−sin(k2x+ωt))

ẑ
2

where I have used ˆz×−ŷ = x̂ to obtain the direction of~E.

3. Fork1ŷ: We have ˆz× x̂= ŷ, so the directions of~E and~H are consistent with each
other. Att = 0,

~E = 3cos(k1y) ẑ
~H = cos(k1y) x̂
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Thus, atk1,

A+B = 3

A−B = 1

which yieldsA(k1) = 2, B(k1) = 1. Thus

~E(~r, t) = [2cos(k1y−ωt)+cos(k1y+ωt)] ẑ
~H(~r, t) = [2cos(k1y−ωt)−cos(k1y+ωt)] x̂

4. Suppose that in part 3,~H(~r,0) = cos(k1y)ẑ. What then? If the wave is to prop-
agate along~y, theEz requires aHx and aHz requires a−Ex. Thus the solution
then have been

~E(~r, t) =
3
2

[cos(k1y−ωt)+cos(k1y+ωt)] ẑ

−1
2

[cos(k1y−ωt)−cos(k1y+ωt)] x̂

η~H(~r, t) =
3
2

[cos(k1y−ωt)−cos(k1y+ωt)] x̂

+
1
2

[cos(k1y−ωt)+cos(k1y+ωt)] ẑ

Thus the missing components of the fields would have appeared oncet > 0.

5. Suppose that in part 3,~H(~r,0) = sin(k1y)x̂. Then, we would have had

f (z)+g(z) = 3cos(k1y)
f (z)−g(z) = sin(k1y)

Clearly the solution is

f (z) =
3
2

cos(k1y)+
1
2

sin(k1y)

g(z) =
3
2

cos(k1y)− 1
2

sin(k1y)

i.e.,

~E(~r, t) =
3
2

[cos(k1y−ωt)+cos(k1y+ωt)] ẑ

+
1
2

[sin(k1y−ωt)−sin(k1y+ωt)] ẑ

~H(~r, t) =
3
2

[cos(k1y−ωt)−cos(k1y+ωt)] x̂

+
1
2

[sin(k1y−ωt)+sin(k1y+ωt)] x̂
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