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We start with the constitutive equation that relates force to field

~F(~r) = I1 ~dl1×~B(~r)

where
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dV′ (1)

Here~R12 =~r −~r ′ is the position vector of the place where we are measuring field relative to where we have placed the current
element~j(r ′)dV′. This relationship has been observed and we have motivated it from Coulomb’s law and relativity.

The first thing to note is that~R12
/

R3
12 is the same factor that appears in Coulomb’s law, and our previous work tells us that
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where the subscript “r” in∇r indicates that the gradient is obtained by moving the measuring instrument, i.e., by varying~r . A quick
calculation also tells us
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1
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where the second gradient is obtained by varying the source location. Remember thatR12 is a scalar function ofsix coordinates,
namelyx,y,z,x′,y′,z′.

We now put all this to work. The magnetic field can be written using Eq. 1 and 2 to get
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We need to manipulate the cross product. For this

~j(r ′)×∇r f = det
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In class, I forgot to interchange the rows as above. That is why I landed up with a ’-’ sign problem. Correct this in your
notes. Thus Eq. 4 becomes

~B(~r) =
µ0

4π

Z
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R12(~r,~r ′)
dV′

where 1/R12 was f in the above derivation. Since the curl acts on~r and the integral is over~r ′, we can pull the curl out of the integral
to get the result

~B(~r) = ∇×~A(~r) (5)

where
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Note that Eq. 3 was not needed for this part. It will be very necessary later on.
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