The Skin Effect in a set of three Concentric
Cylinders

24th February 2007

Let us work out the skin effect in the following geometry

by by

We have three coaxial cylinders. The inner one is hollow, and the middle and outer
ones are hollow. All the solid portions have a conductiatgnd the gaps are air-filled.
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A currentl flows up through the central conductor and currepiteind (1 — p)l flow
back down the outer conductors as shown. The problem is to determine the detailed
current distributions.

The skin effect is the equation to be obeyed, and the same arguments used to discuss
the arbitrary cylindrical wire apply here. Once again, | ugestead ofj to represent

V-1

OxE = —iwB
OxH = f

i = of

B = uoH

Hence, we obtain
—[02E, = —iwWoOoE,

In cylindrical coordinates, with the only coordinate of interest beirthis becomes
1 .
?a, (rorEz) —ioppoE; =0

or
d’E, dE

2 z z . 2 o
a2 +r—dr iWor<E; =0

The solutions are in the form of Bessel functions,

r

E; = Ad(Ar) +BYo(Ar)

whereh = /Ttf o (1—i) = (1—1i)/6, whered is the skin depth. The current and the
magnetic field are then given by

jz= 0AJ(Ar) + aBYo(Ar)

and
—0r (Ez) = —iwpoHe

Ho — ijo (AB(Ar) +BY)(Ar))

whereJy(Ar) = dJo(Ar) /d(Ar).
Asymptotically, forAr > 1

Jo(Ar) =~ ,/%cos()\r—nm)

E, = AlJo()\r)
jz = O'A1J0(>\I’)

Inr <a,

A
Ho = —AJN
9 T 1Jp(Ar)



sinceYp blows up atr =0. Inby; <r < b,

E; = AxJo(Ar)+BaYo(Ar)
iz = GAzJo()\r) +0'BzYo()\r)
— A / /
He = 1ok (A2Ja(Ar) +ByYo(Ar))
Incy <r<cy,

E; = AsJo(Ar)+BsYo(Ar)

jz = 0AsJo(Ar)+oBsYo(Ar)
Hg = A

i (AsJo(Ar) +B3Yo(Ar))

Now in the airgaps, the symmetry immediately allows us to conclude:

Ho =57 a<r<b

=M by <r<c
r>c
Thus, we can use the continuity df to determine the unknown coefficients:

A |
A ’ , B |
o (A2Jp(Ab1) + BoYg(Aby)) = 21ty

A / / _pl
m (AzJO()\bz) + BzYO()\bz)) =

2y
pl

A
— (AgJé()\Cl) + B3Yé(}\C1)) = 21y

iUy
A

—— (AgJh(A BsY, (A
mopo( aJo(Ac2) +BsYg(Acz)) 0

or, defininga = iwpol /2m\, we have
2a
%0a)

gz ) - ( F?ﬂ//bgz )

As \ _ ( pajci
Bs a 0
The coefficients can be solved by inverting the matrix and notingJjtat = —J(z).

Yi(Abz)  —Yi(Aby) )( o/by )

(%) - & (
Bo ) T Ji(Aby)Yi(Abp) — J(Abo)Yi(Aby) \ —Ji(Ab)  Ji(Aby) pat /by
Y1(>\C2) —Yl()\Cl)

( Az ) B -1 ( ) ( pa/cy 91)
Bs - Ji(Acp)Yi(Acy) — J(Acz)Yi(Acy) =Ji(Ac2)  Ji(Ac) 0

Clearly the answer scales withwhich it should, since containd . We can easily
solve for the coefficients and hence have the complete answer. The solution shape
depends om/3, b1 /3, by /3, ¢1/3, ¢ /8 andp. Using these are inputs, we can graph
the answer.
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The Code

First we define the parameters:

(* 9=

a=3;bl=4;b2=12;cl=13;c2=16;p=0.5;n=201;
Now define some utility functionsij anddy computeJj(Az) andYj(Az).

(* ad)+=
deff ("y=dj(z)","zl=z* (1+%1i);y=-besselj(l,z1)");
deff ("y=dy(z)","zl=z* (1+%1);y=-bessely(1,z1)");

Routinejz returns a vector of, values if a vector of values are passed to it.

(* 4a9)+=
deff ("y=jz (A,B,r)","zl=r* (1+%1);
y=A*besselj(0,z1);if B<>0,
y=A*besselj(0,z1)+B*bessely(0,z1),end");

Routinefac computes the determinant and inverts it.

(- a3=
deff ("y=fac(el,e2)",
"y=1/(dj(bl) *dy (b2) -dj (b2) *dy (b1))");

Routinesjmax and jmin are used to fix graph boundsmin has a check to limit
the lower bound since we want semi-log plots.

(* 4a)+=
deff ("y=jmax (J)","y=max (abs(j))");
deff ("y=jmin(j)","y=floor (min (abs(j)));
if y==0,y=le-3*jmax (j),end");

Compute the coefficients now, using Eq. 1.

(* 4a)+=

Al=2/dj(a); // SA_1$ is directly calculated.

v=[dy (b2) -dy(bl); -dj(b2) dj(bl)]
*fac(bl,b2)*[1/bl;p/b2];

A2=v (1) ;B2=v(2);

w=[dy (c2) -dy(cl);-dj(c2) dj(cl)]
*fac(cl,c2)*[p/cl;0]1;

A3=w(1l);B3=w(2);
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Plot the graphs using subplots.
(* 43)+=

xset ("window", 0);

xset ("thickness", 3);

subplot (3,1,1);

r=linspace(0,a,n);

j=Jz (A1,0,1);

plot2d(r,abs(j),rect=[0 jmin(j) a jmax(j)],
logflag="nl");

xset ("thickness",0);

xgrid(95);

xtitle ("Region 1");

subplot (3,1,2);

r=1linspace (bl,b2,n);

j=jz (A2,B2,1);

xset ("thickness", 3);

plot2d(r,abs(j),rect=[bl jmin(7j)
b2 jmax(j)],logflag="nl");

xset ("thickness",0);

xgrid(5);

xtitle ("Region 2");

subplot (3,1, 3);

r=linspace(cl,c2,n);

j=jz (A3,B3,1);

xset ("thickness", 3);

plot2d(r,abs(j),rect=[cl jmin(j)
c2 jmax(3j)],logflag="nl");

xset ("thickness",0);

xgrid(5);

xtitle ("Region 3");



Discussion

Existence of Solutions

The code assumes that the coefficient matrix is invertible. But is it? Can’t we think of
a particularo or w at which the oscillatory part aly(Ar) goes to zero? Then we won't
be able to match at all.

To answer this question we have to go back to the equatiojyfor

1 . .
?ar (rar Jz) +)\2Jz == 0

The solutions ardJ(Az) + BYy(Az). We have boundary conditions on the derivitive at

b; andb;y (say). Sturm Louville theory says (which is why you need to have learned it
during your Maths courses) that there is a complete set of eigenvalues and eigenfunc-
tions that can build up anjs. Since these functions are purely oscillatory along the real
axis, the eigen values are all real, and so only for keialit possible to find solutions

of

Jo(Aby)  Y4(Aby)
Jh(Ab2)  Yi(Aby)

since that is the eigenvalue equation. Hence, for comples we have for skin effect,
this determinant can never go to zero.

But why does our argument above fail? Doesn’t the oscillatory part go to zero
infinite number of times? The answer is that

det =0

Jo(Ar) = Ber(Ar) +iBei(Ar)

and each of Ber and Bei go to zero nearly periodically. Howetiey, do not go to zero
at the same locatidriThat is to say, the real part or the imaginary part may go to zero,
but the complex function never goes to zero.

This is easier to understand in the cartesian case. Then,

By = Asin(Ax) = Asin(x/d) cosh(x/d) + iAcogx/d) sinh(x/d)

Clearly both cos and sin go to zero periodically. But never for the sanfeve now
obtain the actual field in time, we get

By(x,t) = A(sin(x/d)coshx/d)coswt — cogx/d)sinh(x/d) sinwi)

~ ge?‘/é (sin(x/3) cosut — cos(x/d) sinat)

= By(a) L(a;)/é sin ()S( — wt)

No zeros! Instead we have something new . ..(siB — wt), which is what we call a
“travelling wave”.

Nature of Solutions

Figure 1 shows typical solutions obtained from the code. The plots are semi-log plots
and show thaj, decays exponentially as we move away from any of the walls.

One thing to note is that the current does not go to zergp.atRather it is the
derivitive of j, that goes to zero there.
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Figure 1: Solutions for the case= 39, by = 49, b, = 123, ¢; = 13J, ¢, = 160 and
p=0.5.



Another thing to note is that we cannot mateany bigger. The problem is that
the solution involves the difference of nearly equal quantities (like cosh and sinh. The
computer loses numerical precision when trying to compute the answer.

To understand these results, we must recognise thé| fior 1,

| Zcos(z- 1)
\/Esin (z— g)
\/Esin (z— ;)
Yi(z) =~ \/Ecos(z g)

Thus, for distances much larger than a skin depth, the Bessel functions reduce to
trigonometric functions. Then, the middle region equation looks like lffor by <«

by + by)
s@n()\bl —7%) —cogAb;— %) Ao\ _( ofb
Sln()\bzf %[) 7COS(7\b27174T) B, pC(/bz
SinceA = 6(1+1i), we have nearly equal, exponentially large, coefficients. We can

always replace the trigonometric terms by complex exponentials and only the real part
contributes to magnitude. So the equation looks like so (@ith —A, — By andD =

Ao — Bz): ) )
gn(1-1)/d  o=bi(1-i)/8 C 2a /by
< e2(1-1)/8  gby(1-i)/3 ) ( D ) = < 2pa /by >
Whenby — by > &, the boundary condition d; is primarily fixed by the decaying
exponential, while the boundary conditiontatis fixed by the growing exponential:

c ~ (P aboi-iys
b
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We can confirm by substituting back into the solution

L-)/oC | g bil-)/op ( a ) N (po‘) o (be-by)(1-1)/3

by by
P2(1)/5C | g bal-0)/Bp (0‘) e—(bz—bl)(l—i)/5+<m>
by b2

This is why we see a skin on either side of the middle shell, with almost no current in
the middle.



