Pulse Propagation in4D

11th March 2007

Maxwell's Equations gave us the Wave Equation:

Dx(DxE) = —Dx(atg)
0(0-E)-0% = —po (0xH)
= —J0t + Hed?E

Let us consider a medium in whighande are spatially uniform. Thefl-E = O- D/s = 0. If we further ignore currents (the
medium is assumed insulating), we obtain the familiar wave equation
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As | discussed in class, this is a swindle, since material respora@eadysfrequency dependent, i.e., time dependent. Thus, the
correct version of this equation is
L w? =
O2E(F, w) + ZEfw=0

or, in time domain, taking the inverse fourier transform,
t
2B (7,t) — poaf/ E(r,t)e(t —t)dt =0

Here,e(t —t') is the impulse response of the atoms in the medium. Clearly we have a description of a linear, time-invarient chann
here. Since the real world is neither linear nor time-invarient, even this equation is an approximation, but it is a very good one.
Another assumption has been made here, that the induced currents at & a@ntue entirely to the applied field at that
point. Otherwise, we would have a convolution in space as well. This is also a very good approximation in practice, though it ge
questionable when we start analysing the electromagnetic properties of polymers and proteins, etc.
We now specialize to the 1-D case and obtain

t
92E, — Hod? / Ex(t)e(t —t)dt =0
In this equation, we have assumed th&t just the vacuum permeability. To solve this problem, we goHospace:
Ey— / / E, (k, o) *2deadk

Transforming irg, we obtain
IR (K t) — poaf/ E (K t)e(t —t))dt = 0

Transforming int now yields ~ .
—K2Ex (K, 0) + w?pog(w)Ex(k, ) = 0

Clearly,
k? = w?Hog(w)

must be satisfied i, is to be non-zero. The integral becomes
E(zt) — / / E, (k. w)el® e 4 (3(K — copige) + 8(k + wioe)) deodk

/°° [Aej(wtfk(w)z)_’_Bej(thrk(w)z) dos

whereA andB are the amplitudes of the field along the two curkes wppe(w).



Suppose now that an antennaat 0 sends out only the positive going wave. Herige; 0, and from the field near the antenna,
we have

E0,t) = f(t / A& de

Clearly this is a Fourier transform, and we can solveX@o) as

g jut
2n/ e dt

The wave propagates through all of space, and is given by

Ex(zt) = / Bn / f(t’)e‘j‘*"dt’] ol (K@) g

A receiver antenna is placedat L, and we wish to know what is received. We find,
/ ” Alw)el KO gg

We expandk(w) about the central frequenay. of the original signalf (t). Then,k = ko + kg (0— o) + kg(w—wc)z/Z in the
vicinity of w. The field becomes,

E(L,t) = ellxtob) / N Aw)e (@) Lgi (-we)t—ky(w-we)L) g,
e i(ert—kob) / " A(—)e Ko@) Ll (-oteot-ky(—wreo) g,

Actually, the integrals is assumed to have significant power in the viciniiy @hd— oy, respectively. The second integral represents
the negative frequency branch, and is nothing but the complex conjugate of the positive branch, in ordeEfqpkeepeal. Thus,
we can drop one of the integrals and write

Ex(L,t) = 2Re{ei(wct—koL) / ° A(w)e—jks<w—wc>2Lei(<mmc>tké(wwaL)dw}
Now, from the fourier transform of a Gaussian, we know that
o K@@l _ g et git2 /4L
whereC is the appropriate constant required to conserve energy. Hence, the Electric Field in time is given by
: o ; / 12 n
Ex(L,t) = 2Re{el"°L/ f(t')e (ko) /4k0Ldt’}

Thus the received Electric Field is nothing but a delayed convolution of the originating Field with a very peculiar filter. Since the
function f (t) itself is pure real, we can now eliminate the “Real Part” operator and write

EdL,t) = 2/:” f(t')cos(kol + (t — KoL —t)* /AKIL) ot

Now the functionf(t) has not been specified. Let us specify it now as a DSBSC AM modulation of a carrier wave by a gaussiar
pulse

f(t) = e /2cos(oxt)
Then,

Ex(L,t)

2/ e t” 2cos(uwgt') cos(koL+ (t—koL—t') /4k6L> dt/
= /_we‘t /2 [COS((A)C'[ + koL + (t— ) /AL )
+ cos{ot’ kol — (t — KoL — 1) /4igLat ) | dt

Suppose now that the channel is non-dispersive. Kjen0. Also assume that there is no carrier wave, ug.= 0. Then, the
field becomes

Ex(L,t) = 2/00 e "*/2cos(koL + (t — kyL —t')2 /4KjL) it
— 2/ ~(uttkoL)*/ 2cos(koL +au?) du

wherea = 1/4kgL. The non-dispersive limit correspondskp— 0, i.e.,a — . Let us look at what happens to the pulse for
different values ofx at timet — kL, andkoL = O (this is just a phase factor and is meaningless).
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alpha=[.1 .3 1 3];
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We define the time vector { is used for the plot of the filters):
(* 2)+=

t=

tl

linspace(-5,5,101)";

=linspace(-5,5,501)";

Now for some function definitions. We define the integrand as a function and thentgadi solve for the Electric Field in time.

(2=
deff ("y=integrnd(u,curt)","y=2*f (utcurt) .*cos (curalpha*u.”2)");
deff ("I=E(x)", ["curt=x";"I=intg(-5,5,integrnd)"]);
deff ("y=£f(t)","y=exp (- (t+1.5).72)+texp(-(t-1.5).%2)");

Create the array to hoHfld ahead of time, and define= et*/2 which is the original pulse.

(* 2)+=

n=

length (alpha);

Efld=zeros(length(t),n);

Obtain the output pulse for each valuect= 1/4kgL. Note that there is a coefficient that | don’t bother calculating. Instead |
just use Parseval’'s theorem and equate the energy in the input and output pulses, since the dispersive filter is a unity gain filter. -
results are plotted in subplots, where the left plots are the output (and input) pulses, while the right plots show the correspondi

filter.

(* 9+=
for i=1:n

curalpha=alpha (i) ;

Efld(:,1i)=feval (t,E);
Efld(:,1)=Efld(:,1i)*norm(f(t))/norm(Ef1ld(:,1));
subplot (n,2,2*%i-1);

plot2d(t, [Ef1d(:,1) £(t)]1,[1 2]);
xgrid(95);

xtitle ("alpha="+string(alpha(i)));
subplot (n,2,2%1);

plot2d(tl, cos(curalpha*tl.”2));
xgrid(5);

xtitle("cos ("+string(curalpha)+"*t"2)");

end

Figure 1 shows the result of running the above code for a single transmitted pulse. As can be sakstraases from a large
value, the pulse spreads. This corresponds to increasing the link distaibe computations are not very accurate since the filter
is not fully captured i —5,5) which is the integral computed above.

Figure 2 shows what happens whift) = up(t).

The lessons to take from these pictures are:

1.

Despite the fact that the filter rota conventional low pass filter in the sense of having lower absolute gain at higher frequen-
cies, in practice it behaves like one.

. The filter both low pass filters and adds oscillations to the pulse.
. Sincea [ l/kgL, o starts ato and continuously reduces till it approaches zero as the link length increases.

. a has the dimensions of?. The critical value ofx where it starts having observable effects is whelnecomes comparable

with wy, the modulation frequency.

What happens when we have two pulses? That can be seen in Figure 3. It is clear that there is a lot of crosstalk between the pu
when dispersion is present. This is a major reason why we don’t want dispersion in communication channels.

Note: One final thing to remember: Therens loss of signal during dispersion. The signal phase has got mixed up. But it is all

there. Which means that dispersion can be corrected. This is what is done in communications receivers where the mang
signal is put through aadaptive filterthat undoes what the channel did and recovers the original pulse from the mess that was
received.



Figure 1: Received pulse for differeatfor a transmitted gaussian pulee‘z/ 2
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Figure 2: Effect of dispersion on a rising edge
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Figure 3: Received signal when two gaussian pulses are transnfitted: (=157 4 glt+15)?
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