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Maxwell’s Equations gave us the Wave Equation:

∇×
(

∇×~E
)

= −∇×
(

∂t~B
)

∇
(

∇ ·~E
)
−∇2~E = −µ∂t

(
∇× ~H

)
= −µ∂t~j +µε∂2

t
~E

Let us consider a medium in whichµ andε are spatially uniform. Then∇ · ~E = ∇ · ~D
/

ε = 0. If we further ignore currents (the
medium is assumed insulating), we obtain the familiar wave equation

∇2~E− 1
c2 ∂2

t
~E = 0

As I discussed in class, this is a swindle, since material response isalwaysfrequency dependent, i.e., time dependent. Thus, the
correct version of this equation is

∇2~E(~r,ω)+
ω2

c2
~E(~r,ω) = 0

or, in time domain, taking the inverse fourier transform,

∇2~E(~r, t)−µ0∂2
t

Z t

−∞
~E(~r, t ′)ε(t− t ′)dt′ = 0

Here,ε(t− t ′) is the impulse response of the atoms in the medium. Clearly we have a description of a linear, time-invarient channel
here. Since the real world is neither linear nor time-invarient, even this equation is an approximation, but it is a very good one.

Another assumption has been made here, that the induced currents at a point~r are due entirely to the applied field at that
point. Otherwise, we would have a convolution in space as well. This is also a very good approximation in practice, though it gets
questionable when we start analysing the electromagnetic properties of polymers and proteins, etc.

We now specialize to the 1-D case and obtain

∂2
zEx−µ0∂2

t

Z t

−∞
Ex(t ′)ε(t− t ′)dt′ = 0

In this equation, we have assumed thatµ is just the vacuum permeability. To solve this problem, we go toω-k space:

Ex =
Z Z

Ẽx(k,ω)ejωte− jkzdωdk

Transforming inz, we obtain

−k2Ẽx(k, t)−µ0∂2
t

Z ∞

−∞
Ẽx(k, t ′)ε(t− t ′)dt′ = 0

Transforming int now yields
−k2Ẽx(k,ω)+ω2µ0ε(ω)Ẽx(k,ω) = 0

Clearly,
k2 = ω2µ0ε(ω)

must be satisfied if̃Ex is to be non-zero. The integral becomes

Ex(z, t) =
Z Z

Ẽx(k,ω)ejωte− jkz(δ(k−ωµ0ε)+δ(k+ωµ0ε))dωdk

=
Z ∞

−∞

[
Aej(ωt−k(ω)z) +Bej(ωt+k(ω)z)

]
dω

whereA andB are the amplitudes of the field along the two curvesk =±ωµ0ε(ω).
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Suppose now that an antenna atz= 0 sends out only the positive going wave. Hence,B = 0, and from the field near the antenna,
we have

Ex(0, t) = f (t) =
Z ∞

−∞
Aejωtdω

Clearly this is a Fourier transform, and we can solve forA(ω) as

A(ω) =
1
2π

Z ∞

−∞
f (t)e− jωtdt

The wave propagates through all of space, and is given by

Ex(z, t) =
Z ∞

−∞

[
1
2π

Z ∞

−∞
f (t ′)e− jωt ′dt′

]
ej(ωt−k(ω)z)dω

A receiver antenna is placed atz= L, and we wish to know what is received. We find,

Ex(L, t) =
Z ∞

−∞
A(ω)ej(ωt−k(ω)L)dω

We expandk(ω) about the central frequencyωc of the original signalf (t). Then,k = k0 + k′0 (ω−ωc) + k′′0 (ω−ωc)
2/

2 in the
vicinity of ωc. The field becomes,

Ex(L, t) = ej(ωct−k0L)
Z ∞

−∞
A(ω)e− jk′′0(ω−ωc)2Lej((ω−ωc)t−k′0(ω−ωc)L)dω

+e− j(ωct−k0L)
Z ∞

−∞
A(−ω)e− jk′′0(ω+ωc)2Lej((−ω+ωc)t−k′0(−ω+ωc)L)dω

Actually, the integrals is assumed to have significant power in the vicinity ofωc and−ωc, respectively. The second integral represents
the negative frequency branch, and is nothing but the complex conjugate of the positive branch, in order to keepEx pure real. Thus,
we can drop one of the integrals and write

Ex(L, t) = 2Re

{
ej(ωct−k0L)

Z ∞

−∞
A(ω)e− jk′′0(ω−ωc)2Lej((ω−ωc)t−k′0(ω−ωc)L)dω

}
Now, from the fourier transform of a Gaussian, we know that

e− jk′′0(ω−ωc)2L 
 Ce− jωcte− jt2
/

4k′′0L

whereC is the appropriate constant required to conserve energy. Hence, the Electric Field in time is given by

Ex(L, t) = 2Re

{
e− jk0L

Z ∞

−∞
f (t ′)e− j(t−k′0L−t ′)2

/
4k′′0Ldt′

}
Thus the received Electric Field is nothing but a delayed convolution of the originating Field with a very peculiar filter. Since the
function f (t) itself is pure real, we can now eliminate the “Real Part” operator and write

Ex(L, t) = 2
Z ∞

−∞
f (t ′)cos

(
k0L+

(
t−k′0L− t ′

)2/
4k′′0L

)
dt′

Now the functionf (t) has not been specified. Let us specify it now as a DSBSC AM modulation of a carrier wave by a gaussian
pulse

f (t) = e−t2/2cos(ωct)
Then,

Ex(L, t) = 2
Z ∞

−∞
e−t ′2/2cos

(
ωct

′)cos
(

k0L+
(
t−k′0L− t ′

)2/
4k′′0L

)
dt′

=
Z ∞

−∞
e−t ′2/2

[
cos

(
ωct

′+k0L+
(
t−k′0L− t ′

)2/
4k′′0L

)
+ cos

(
ωct

′−k0L−
(
t−k′0L− t ′

)2/
4k′′0Ldt′

)]
dt′

Suppose now that the channel is non-dispersive. Thenk′′0 = 0. Also assume that there is no carrier wave, i.e.,ωc = 0. Then, the
field becomes

Ex(L, t) = 2
Z ∞

−∞
e−t ′2/2cos

(
k0L+(t−k′0L− t ′)2/4k′′0L

)
dt′

= 2
Z ∞

−∞
e−(u+t−k′0L)2

/2cos
(
k0L+αu2)du

whereα = 1
/

4k′′0L. The non-dispersive limit corresponds tok′′0 → 0, i.e., α → ∞. Let us look at what happens to the pulse for
different values ofα at timet−k′0L, andk0L = 0 (this is just a phase factor and is meaningless).

2 〈* 2〉≡
alpha=[.1 .3 1 3];
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We define the time vector (t1 is used for the plot of the filters):

3a 〈* 2〉+≡
t=linspace(-5,5,101)’;
t1=linspace(-5,5,501)’;

Now for some function definitions. We define the integrand as a function and then callintg to solve for the Electric Field in time.

3b 〈* 2〉+≡
deff("y=integrnd(u,curt)","y=2*f(u+curt).*cos(curalpha*u.^2)");
deff("I=E(x)",["curt=x";"I=intg(-5,5,integrnd)"]);
deff("y=f(t)","y=exp(-(t+1.5).^2)+exp(-(t-1.5).^2)");

Create the array to holdEfld ahead of time, and definef = e−t2/2, which is the original pulse.

3c 〈* 2〉+≡
n=length(alpha);
Efld=zeros(length(t),n);

Obtain the output pulse for each value ofα = 1
/

4k′′0L. Note that there is a coefficient that I don’t bother calculating. Instead I
just use Parseval’s theorem and equate the energy in the input and output pulses, since the dispersive filter is a unity gain filter. The
results are plotted in subplots, where the left plots are the output (and input) pulses, while the right plots show the corresponding
filter.

3d 〈* 2〉+≡
for i=1:n
curalpha=alpha(i);
Efld(:,i)=feval(t,E);
Efld(:,i)=Efld(:,i)*norm(f(t))/norm(Efld(:,i));
subplot(n,2,2*i-1);
plot2d(t,[Efld(:,i) f(t)],[1 2]);
xgrid(5);
xtitle("alpha="+string(alpha(i)));
subplot(n,2,2*i);
plot2d(t1,cos(curalpha*t1.^2));
xgrid(5);
xtitle("cos("+string(curalpha)+"*t^2)");

end

Figure 1 shows the result of running the above code for a single transmitted pulse. As can be seen, asα decreases from a large
value, the pulse spreads. This corresponds to increasing the link distanceL. The computations are not very accurate since the filter
is not fully captured in(−5,5) which is the integral computed above.

Figure 2 shows what happens whenf (t) = u0(t).
The lessons to take from these pictures are:

1. Despite the fact that the filter isnot a conventional low pass filter in the sense of having lower absolute gain at higher frequen-
cies, in practice it behaves like one.

2. The filter both low pass filters and adds oscillations to the pulse.

3. Sinceα ∝ 1
/

k′′0L, α starts at∞ and continuously reduces till it approaches zero as the link length increases.

4. α has the dimensions ofω2. The critical value ofα where it starts having observable effects is whenω becomes comparable
with ωM, the modulation frequency.

What happens when we have two pulses? That can be seen in Figure 3. It is clear that there is a lot of crosstalk between the pulses
when dispersion is present. This is a major reason why we don’t want dispersion in communication channels.

Note: One final thing to remember: There isno loss of signal during dispersion. The signal phase has got mixed up. But it is all
there. Which means that dispersion can be corrected. This is what is done in communications receivers where the mangled
signal is put through anadaptive filterthat undoes what the channel did and recovers the original pulse from the mess that was
received.
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Figure 1: Received pulse for differentα for a transmitted gaussian pulsee−t2/2
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Figure 2: Effect of dispersion on a rising edge
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Figure 3: Received signal when two gaussian pulses are transmitted:f (t) = e(t−1.5)2
+e(t+1.5)2
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