Problems in Magnetostatics

8th February 2007

Some of the later problems are quite challenging. This is characteristic of problems
in magnetism. There are trivial problems and there are tough problems. Very few
problems lie in between.

1. Which of these Magnetic fields can exist? Determine the current density that
created the valid fields. What Vector Potential corresponds to these fields?

(a) B(r) =e V%
Divergence of the vector gives
O0-B=oe¥ =0

The field does not blow up anywhere. Hence this is a valid magnetic field.
(It does not go to zero for large x but smal] though).

The curl gives the current:
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iD x B = —5aye—y2 =
Ho Ho

The vector potential can be found directly frdn= 0 x A. LetA = Ayy.
Then

BX - _asz
Hence Ay = —ze ¥ ie,
A=—ze¥y

(b) B(F) =%
Divergence of this field is not zero. Hence it cannot be a valid magnetic
field.

(c) B(F) = sin(kr)F (r,8,z coordinate system)
Again, divergence of this field is

0-B = 9, sin(kr) = kcos(kr)

is not zero. Hence not a valid field.



(d) B(r) = ro (r,8,z coordinate system)
The divergence of this field is zero sinBg does not depend of. The
current density is given by

- 22

f=—>0, (r’) ==

=t (r*) ™
From Stokes theoreffiB- dl = 212 = 12 jopo which confirms this answer.
The vector potential is again easiest to get fidm

—

A=rzf

. The following current densities are given. Determine the Magnetic Fields.

@) j(r)=re"é:
From symmetry, we expe@;,dy = 0. S0,B = B,(r)2 From Ampere’s
Law, we have
tore " = —0,B;
Hence,B,(r) = B,(0) — Wo fy r'e"'dr’. Since the total current is bounded
and goes quickly to zero alomglim, .., B, = 0. Hence,

B.(r) = po/ re"dr
r
The vector potential is similarly got frod = O x A. Clearly,A = Ae(r)é.
B,(r) = po/ re"dr = %6, (rAg)
r

This can again be integrated to obtdinNote that the integrals are obtain-
able via integration by parts, but that is not the point of this course.

-

(b) j(r) is a square of current of 1 Ampere with its sides alongztaris, they
axis,y =1 andz= 1. The current is flowing along2 up thez—axis. (It is
sufficient to give the answers in terms of integrals, if you cannot simplify
them):

For any line current extending fronTy to I + L2, the Vector Potential is
given by

*:Elz/L ac
4t Jo \/(x—x0)2+ (y—Y0)2+ (z— 20— )2

Similarly for a line current along,”

o o [* dg
4—Iy/ 2 2 2
TS0 \/(x=x%0)2+ (Y= Yo— )2+ (z— 20)
Hence the total Vector Potential is given by

A

> &L\ 1 1 - 1
A = 4]_[2/0 \/x2+y2+(2—1)2 \/XZ+(V—1)2+(2—Z)21 dZ
bl . 1 1 - 1
+Hy/° V(Y —02+(z-12 R+ (y-0)?2+7




which can easily be expressed in closed form. The curl of this can now be
taken.

The far field due to this (or any) loop, can be obtained by Taylor expansion
(seeFar field of an arbitrary current loopn the site)

Tl
Ar = W[ 4y
r24r2-2r.v
1/ r-r
~ :‘?”/J(r*)<1+r2>dv’
_ HomxT
-~ 4mor3

The derivation is lengthy and is given separately. The important thing to
note is that this formula now applies to any loop, even one not in the plane.
The magnetic dipole moment is given by

= }{r” x J(7)dV/

3. Acurrentloop is elliptical in shape and lies in the z plane with its major axis
alongy and its centre at the origin. What componentsiadnd B are present
along thex-axis? What components are present alongytagis? Hint: If a
function is symmetric about a point, its derivitive at that point goes to zero.

For each element of current < 0, there is a symmetrical element with>
0. Combining them vyields a ngtalongZ HenceA is alongZeverywhere on
the x—y plane, including along the x- and y-axes. ThBshas only x and y
components.

B = R0yA; — JoxA,

By symmetry we expeds to be alongkon the y-axis and alongén the x-axis
(this is obviously true for the special case of a circular loop).

4. Consider the solution fok andB for a finite solenoid. Obtain the radial compo-
nent of theB field near the axisHint: Use the divergence theorem and collect
terms order by order in smallness and find the lowest order radial:term.

From the derivation of the field for the finite solenoid, we have an expression for
B = B;(2)zon axis. Let

k=

B, = Z sz(z)rk
k=0
We have expressions f& andB;o = 0. Now apply the divergence theorem to
a cylinder of heightizand radius r

k+2 3
+ ZBrk(z)rkZT[rdz =0
o

éo(szkm d2) - Bu(2) 2n|£+ .



00

21 &
Zom (0Ba(2)) r*2 + ZOZT[Brk(Z)rk+l = 0
k= K=

© 1
2 k+1 9B,k 1+ B, =0
nkZOr (k—|—1 Bzk-1+ rk)

Working order by order im, this yields

Bro = 0
1
Brl = —EazBZO

etc. Using (from the solenoid problem)

L/2—-z B —-L/2-z ] <
J2=224@ \J(-Lj2-2% 2]

Br1 can now be calculated for amzy

BzO = |J0n|0

. A solid wire carries a D.C. currerit How is this current distributed? What
happens to thgv x B force acting on conduction electrons?

Due to symmetryj depends on but not or@ or z. Applying divergence theorem
to a cylinder of radiugs and arbitrary height, we obtain that

_dQencl -0

2=~

Thus, ] = jo(r)8+ j2(r)2 which automatically implies thak also lies in thed-z
plane (why? remember the circular loop derivation).

Now inside a conductor we must have
F = gen (E+ve>< @) —QenE+ ] x B
or
70 (qen€ + 7' B) )

Now, A lies in theb-z plane and depends only onHenceB = [ x A also lies in
the6-zplane and depends only onSo] x B is the cross product of two vectors,
both of which are in thé-2 plane. The direction of this term is Thus, Eq. 1
can be written as

jr = 0
js = qen(vexB)ezo
jz = OoEzZ

This, in turn impliesA = A,(r)2 and B = Bg(r)8. Since the magnetic field is
static, Faraday’s law (which we do not officially know about yet) does not apply,
and the Electric field remains curl free. What this means is that

L L
/ Edz= 1/ jzdz= Applied Voltage
0 o.Jo
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is independent of. Note that this last step would fail & £ —C¢. Thus,] = j,2
is uniform over the cross-section.

How is this possible? After all we have adl x B force that would tend to push
the current towards the center of the wire (this is called a pinch effect, and is
real). The answer is that static Electric field builds up so that at each nadius

Er - VZBB
Then, the total force on conduction electrons becomes
'f == Qe <E22+ Erf+Ve X é) - qu22

It is as if the magnetic field never was.

Note: Earlier we used = oE and here we are violating that. The actual equation
is =0 (E+VxB). SinceB is alongd andV is alongz only ther component
sees this extra term. This equation is known as generalized Ohm'’s law.

. A pipe of irregular cross-section carries a D.C. currenDetermine how the
current is distributed.

This is a more complicated problem. The cross-section is not given to be axially
symmetric inB. But it is given to be a cylinder, i.ed; = 0.

Inside the metal, the steady state momentum equation for electrons yields
0: qe (E+Ve X é) - rneVQVQ
Thus, the currenf must satisfy

Ne03
MeVe

Since]j is orthogonal toj x B, the | x B term cannot caus@ This is actually

the immediate proof that no steadystate current can exist in the absence of an
Electric Field. Lett = EjJ +E,. Then,

O = qeneEL + TX é
i = ofj
OxB = wj

Now, it is quite possible that part of the applied Electric Field goes towards
building upE , . However, even when that is so, it must be the casebhat the
uncancelled portion of the applied (external) Electric Field.

e But this means tha is alongZ'since the applied field is alormg ~
e Thenj must also be alongsince = o |.

o Itimmediately follows thalh = A,(x,y)Z.
Taking the curl, then = ByX+ B,y.



To summarize:

j = j2=0Ez2
I& — A22
B = B&+ByY

This solution requires that we be able to find a curl-free Electric Field that satis-
fies

-

E, + J xB=0
eNe
A solution will existif 0 x E, = 0:
OxE = q:ner(fxé)
= e l(@8)i-(27)8
=0

since bothj andB are divergence free.
Thus we now have a complete answer to the problem, since a unijféutty
specifies all the currents present, which allows us to calciatandB as well.

. A conducting fluid is forced across a uniform magnetic field. Show that a voltage
develops across the terminals (with area A, kept-a0 andx = L). Assume that

the terminal ak = 0 is grounded. If aresistétis connected across the terminals,
determine how this potential relates to the velocity profile of the fltiid,u(x)2

and the strength of the = By field. You may assumé= o (E +Ux I§) :

The fluid has a conductivitg and flows with a velocity,(x)2 across the termi-
nals. The terminals are asssumed to be-at0 (grounded) and = L (at some

voltageV), and have an are& A uniform magnetic fieldoy is present. The ter-

minals are connected across a resifoand carry a currer\l/R. This current
must be the same at allpositions by charge continuity. Hence,

. |
]xZU(Ex—UzBO):—K

We can therefore calculat&

L
vV - f/ E,dx
0
L | 5
- -, (m*“z °>

IL L
= ——B
AG 0/0 Uz

= -IR

where the— sign in the last term was due to the fact that the direction of current
was into the positive terminal of the MHD battery. Hence,



B —Bof(',‘ udx —Bof('; uzdx
- 1+L/RA0 1+R/R

. Show that the magnetic field cannot do any work on a particle, i.e., cannot change
its energy.

The force equation is

av _ _
ma =q (E +Vx B)
The work done by the applied force is given by
aw _ _ -
9 F.v:q(E+V><B)~V

= qE-V

Hence, the magnetic field cannot directly do any work on a charged particle. It
canhowever do work via an induced electric field.

. Given

- Mo Mmxr
A="—
4t r3
determineB(F). Then obtairi] x B and show that it is zero except at the origin.

. An axially symmetric §g = 0) magnetic field is given by

Z

A proton (chargee, massmy) has an initial position at the origin and an initial
velocity of V= (3%+ 2) x 10%/1/10 metres per second.

(a) DetermineB; andBg. Sketch them. This is what is called a “magnetic
mirror” where the axial magnetic field is stronger at two ends of a mag-
netic field. Examples include the earth’s magnetic field which is strongest
near the ends, i.e., the poles and weaker in the middle which is high in the
magnetosphere.

(b) Let the intial velocity of the proton be #@netres per second alorgSolve
for the trajectory of the proton in time. Remember that the equation to be
solved is _
The proton moves in circles in a uniform magnetic field.

(c) Consider the actual trajectory. Assume (as is quite valid) that the distance
travelled alongzis negligible during a single gyroperiod (= ZTI/Qp,
Qp = eBz(z)/mp). At any given position irg, determine the force on the
proton due ta/ x B. Write down the equation for the evolution wft).

(d) Invoke conservation of energy (see previous problem) to obtain the modi-
fied v; (t). Computeu = m\ﬁ/ZBz. How does it evolve in timeRlote: pis
what is called an adiabatic invariant, and it is an extraordinarily important
guantity that is instrumental in helping us understand waves in magnetised
gases (eg., solar wind, ionosphere, solar corona etc.)



