
Use of Fourier and Laplace Transforms in Potential Problems

12th February 2007

Strip of Potential on a conducting plane

Consider a problem of an infinite plane that is grounded, except for a strip that is held atV0 volts. We wish to find the potential for
z> 0.
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Thex direction goes from−∞ to ∞ and hence must use trigonometric solutions. Thezdirection has only positive values ofzand
exponential solutions are acceptible. Hence we can write down the general solution

φ(x,z) =
Z ∞

−∞
cke

jkxe−|k|zdk

Clearly we have a fourier transform inx. At z= 0+, the potential is specified. Hence, we have

φ(x,0+) =
Z ∞

−∞
cke

jkxdk= V0u0(1−x)

wherea is the half-width of the strip of potential. This is trivially solved, via

ck =
1
2π

Z ∞

−∞
φ(x,0+)e− jkxdx

=
V0

2π

Z 1

−1
e− jkxdx

= −V0

2π
ejk−e− jk

jk

= −V0

π
sink

k

Hence the potential for anyx and anyz is given by

φ(x,z) =−V0

π

Z ∞

−∞

sink
k

ejkxe−|k|zdk

This can converted into a cosine integral by recognising the symmetry ink:

φ(x,z) =−2V0

π

Z ∞

0

sink
k

cos(kx)e−kzdk
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Asymptotic Limits

The questions of interest are:

• How quickly does the potential decay if we move to largez for fixedx?

• How quickly does the potential decay if we move to largex for fixedz?

We can recognise that the integral is a Laplace Transform that takesk to z

φ(x,z) = L
{
−2V0

π
sink

k
cos(kx) ,k→ z

}
For largez, it is the behaviour of the function at smallk that matters. This can be Taylor expanded to give

φ(x,z) ' L

{
−2V0

π

(
1− k2

6

)(
1− (kx)2

2

)
,k→ z

}

' L
{
−2V0

π

(
1−k2

(
1
6

+
x2

2

))
,k→ z

}
= −2V0

π

{
1
z
− 2

z3

(
1
6

+
x2

2

)}
, 1,x� z

The potential decays as 1
/

z. This should be compared to the potential of line charges that scale as lnz. The change in scaling is due
to the induced negative line charges in the ground plane.

To study the variation withx, we can recognise that coskx is an oscillating function. Think of the integral asZ ∞

0
f (k)cos(kx)dk

Any 2π
/

x portion of the integral is basically equal to

π
x

[
− f
(

k+
π
x

)
+

1
2

f (k)+
1
2

f

(
k+

2π
x

)]
= f ′

(
k+

3
2

π
x

)
− f ′

(
k+

1
2

π
x

)
=

π
x

f ′′
(

k+
π
x

)
Hence, the integral simplifies for largex to

−2V0

x

Z ∞

0
∂2

k

(
sink

k
e−kz

)
dk∝

1
x

Grounded Plane with Charge Sheet

Consider a conducting, grounded sheet in thex-y plane. A sheet of charge (σ Coulombs per square metre) is placed on thex-zplane
for 0 < z< 2. We want the potential forx > 0, z> 0.
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As the problem is symmetric, there will be noEx on thex-z in the region beyondz= 2. Thus along thez axis, the boundary
condition is purely a specification ofEx.
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What I mean here is that due to the boundary conditions and the applied charge being symmetric inx, the resulting
potential is symmetric inx, i.e.,φ(x,z) = φ(−x,z) (y is assumed ignorable). Then,

Ex(0,z) = lim
x→0

φ(x,z)−φ(−x,z)
2x

= 0

provided the limit exists.For instance, the limit does not exist for 0< z< 2, since a charge sheet is present, and the
gradient is discontinuous atx = 0 - it is negative forx > 0 and positive forx < 0. Thus,Ex = 0 beyond the charge sheet.

The condition alongz= 0 is given byφ(x,0+) = 0. The condition alongx = 0 is∂xφ =−Ex =−σ
/

ε0. We try a solution of the form

φ(x,y) = φ(r,θ) = F(r)G(θ)

The equation becomes
r
F

∂r (r∂rF)+
1
G

∂2
θG = 0

So,

r2F ′′+ rF ′+k2F = 0

∂2
θG−k2G = 0

Then
G = sinhkθ

to account for the condition atz= 0, and the equation forF yields

F = Cr jk +Dr− jk = Cejk ln r +Dejk ln r

The general solution inu = ln r, θ becomes

φ(u,θ) =
Z ∞

−∞
ck

sinh(kθ)
cosh

(
kπ
/

2
)ejku

At θ = π
/

2, theθ-derivitive yields the condition

1
r

∂θφ(r,θ) =−Eθ =
{

σ
/

ε0 0 < r < 2
0 r > 2

Thus the condition inu,θ becomes

∂θφ(u,θ) =
{

euσ
/

ε0 −∞ < u < ln2
0 u > ln2

Substituting into the integral this yields Z ∞

−∞
kcke

jku =
{

euσ
/

ε0 −∞ < u < ln2
0 u > ln2

This problem can now be solved in the standard way to obtainck and hence the potential everywhere.
An alternate way of solving the problem would have been to use

φ(x,y) = sin(ky)e−kx

Then the general solution would have been

φ(x,y) =
Z ∞

0
ck sin(ky)e−kxdk

The boundary condition aty= 0 is automatically satisfied since sin(ky) goes to zero aty= 0. The condition on charge now becomesZ ∞

0
kck sin(ky)dk=

{
σ
/

ε0 0 < y < 2
0 y > 2

This can be solved using the standard approaches.
A third approach is to use the method of images. Replace the ground plane by a sheet ofnegativecharge fromz=−2 to z= 0.

Now the potential can be calculated from the Gauss’ Law result for a line charge. For a line charge at origin, we have

Er =
λ

2πε0r

and

φ =
λ

2πε0

r
a

wherea is any reference distance at which we set potential to zero. Using this expression for the charge sheet we get

φ(x,z) =
σ

2πε0

Z 2

0

[
ln
(

x2 +
(
z−z′

)2
)
− ln

(
x2 +

(
z+z′

)2
)]

dz′
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Please Note:I messed up in the previous incarnation of this document. Thanks to you folks for pointing it out.

By the uniqueness theorem, all three approaches will give the same answer. Which answer is more convenient, or easier to compute
depends on the problem. In the current case, obviously the method of images gives us a simpler answer.

The method of images is a special case of a general technique called Green’s Functions. Given any problem, we solve the
problem of placing a building block charge in that region, say a point charge, or a line charge or anything else, from which we can
build the answer. We construct the answer by combining these building block answers. In the current example, our building block
charges were line charges. We used the potential for that problem in an integral to obtain the potential for a sheet. Unfortunately,
getting the Green’s function can often be more complicated than solving the problem directly.

One final way to solve this problem is the way I mentioned as a general method earlier: Find a particular solution of Poisson’s
Equation and solve Laplace’s Equation to match the modified boundary conditions. Here, that would mean we start with

φP(x,z) =
σ

2πε0

Z 2

0
ln
(

x2 +
(
z−z′

)2
)

dz′

which is simply Coulomb’s law for the given charge sheet. The boundary condition to be satisfied isφ(x,0+) = φP +φH = 0. So we
now need to solve Laplace’s Equation forφH with the boundary condition

φH(x,0+) =− σ
2πε0

Z 2

0
ln
(
x2 +z′2

)
dz′

Our solution now follows the standard approach:

φH(x,z) =
Z ∞

−∞
cke

jkxe−kz

φH(x,0+) =
Z ∞

−∞
cke

jkz =− σ
2πε0

Z 2

0
ln
(
x2 +z′2

)
dz′

Theck are found by solving the Fourier Transform problem and that gives us the full solution.
The lesson here is that there is no one way of solving these problems.Any way is acceptible. As long as it satisfies the equation

and the boundary conditions, which expansion or which trick you used to get there does not matter.
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