Laplace's Equation: Example

8th February 2007

The Problem

A cylinder is partially filled with a dielectric ε_1 with the rest of the volume being air. A voltage of $V_0 \sin \theta$ is applied at the wall (r = b). The problem is to find the potential within the cylinder.

Laplace's Equation in cylindrical coordinates is

$$\frac{1}{r}\partial_r(r\partial_r\phi) + \frac{1}{r^2}\partial_\theta^2\phi = 0 \tag{1}$$

You are expected to know this stuff. If you don't read Appendix 2 of the textbook, where the vector operators are "derived" in generalised coordinates.

We try the separation of variables approach and guess

$$\phi(r,\theta) = F(r)G(\theta)$$

Equation 1 now becomes

$$\frac{G}{r}\partial_r(r\partial_r F) + \frac{F}{r^2}\partial_\theta^2 G = 0$$

Multiplying by r^2/FG , we get

$$\frac{r}{F}\partial_r(r\partial_r F) + \frac{1}{G}\partial_\theta^2 G = 0$$

Since the first term depends only on r and the second only on θ , we can set them separately equal to a constant. To short circuit the next part, we can see that the system

is periodic in θ , which means that G must be trigonometric in nature. The 2π periodicity implies

$$\partial_{\theta}^{2}G + n^{2}G = 0$$
$$r^{2}\partial_{r}^{2}F + r\partial_{r}F - n^{2}F = 0$$

Solutions are of the form

$$G = A\cos n\theta + B\sin n\theta$$

and

$$F = Cr^{\alpha} + Dr^{\beta}$$

Here α and β must satisfy the characteristic equation

$$\alpha(\alpha - 1) + \alpha - n^2 = 0$$

Clearly $\alpha = n$ and $\beta = -n$. So

$$F = Cr^n + Dr^{-n}$$

and for n = 0, we get

$$F = C + D \ln r$$

In the region $0 \le r < a$, the r^{-n} term is not acceptible and we get

$$\phi_1(r,\theta) = C_0 + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n \left[C_n \cos \theta + D_n \sin \theta\right]$$

In the region $a < r \le b$, both radial terms are acceptible. We then get

$$\phi_2(r,\theta) = E_0 + \sum_{n=1}^{\infty} \left[E_n \left(\frac{r}{a} \right)^n + F_n \left(\frac{r}{a} \right)^{-n} \right] \left[H_n \cos \theta + G_n \sin \theta \right]$$

One great simplification that we get is that the boundary potential has been given as $V_0 \sin \theta$. Orthogonality means that only $G_1 = V_0$ is non-zero and all the other G and H coefficients are zero.

$$\phi_2(r,\theta) = \left(E_1\left(\frac{r}{a}\right) + F_1\left(\frac{a}{r}\right)\right)V_0\sin\theta\tag{2}$$

The boundary condition at r = b requires

$$E_1\left(\frac{b}{a}\right) + F_1\left(\frac{a}{b}\right) = 1$$

At $r = a^+$, the potential becomes

$$\phi_2(a^+, \theta) = V_0(E_1 + F_1) \sin \theta$$

Let us see what happens at r = a. First, the potential must be continuous, since the field is bounded. This means that

$$V_0(E_1 + F_1)\sin\theta = C_0 + \sum_{n=1}^{\infty} [C_n\cos n\theta + D_n\cos n\theta]$$

But these are orthogonal functions and it is obvious that only D_1 is non-zero and it is given by $V_0(E_1 + F_1)$. Thus,

$$\phi_1(r,\theta) = V_0(E_1 + F_1)\left(\frac{r}{a}\right)\sin\theta\tag{3}$$

We are almost there. We need one more equation to pin down E_1 and F_1 . Let us consider the displacement vector \vec{D} . Consider a cylinder radius Δ and height δ such that the r = a surface cuts the cylinder.

Now we send Δ to zero, while keeping $\delta \ll \Delta$. Applying divergence theorem to this "pill box", we obtain

$$D_r(a^+, \theta) = D_r(a^-, \theta)$$
 for all θ

i.e.,

$$-\varepsilon_0 \partial_r \phi_2(r,\theta)|_{r=a} = -\varepsilon_1 \partial_r \phi_1(r,\theta)|_{r=a}$$

Using Eq. 3 and Eq. 2 in this equation we obtain

$$-\varepsilon_0 \left(\frac{E_1}{a} - \frac{F_1}{a}\right) V_0 \sin \theta = -\varepsilon_1 \left(\frac{E_1 + F_1}{a}\right) V_0 \sin \theta$$

i.e.,

$$\varepsilon_0 \left(E_1 - F_1 \right) = \varepsilon_1 \left(E_1 + F_1 \right)$$

Thus we have the following system of equations

$$\left(\begin{array}{cc} b/a & a/b \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} E_1 \\ F_1 \end{array}\right) = \left(\begin{array}{c} 1 \\ \varepsilon_1/\varepsilon_0 \end{array}\right)$$

The solution is

$$\left(\begin{array}{c} E_1 \\ F_1 \end{array}\right) = -\frac{1}{b/a - a/b} \left(\begin{array}{cc} -1 & -a/b \\ -1 & b/a \end{array}\right) \left(\begin{array}{c} 1 \\ \varepsilon_1/\varepsilon_0 \end{array}\right) = \frac{1}{b/a - a/b} \left(\begin{array}{c} 1 + a\varepsilon_1/b\varepsilon_0 \\ b\varepsilon_1/a\varepsilon_0 - 1 \end{array}\right)$$

So we finally obtain the potential in the cylinder:

$$\phi(r,\theta) = \begin{cases} V_0\left(\frac{a}{b} + \frac{b}{a}\right) \frac{\varepsilon_1/\varepsilon_0}{b/a - a/b} \left(\frac{r}{a}\right) \sin \theta, & r < a \\ V_0\left(\frac{1 + a\varepsilon_1/b\varepsilon_0}{b/a - a/b} \frac{r}{a} + \frac{b\varepsilon_1/a\varepsilon_0 - 1}{b/a - a/b} \frac{a}{r}\right) \sin \theta & r > a \end{cases}$$
(4)

Let us graph the field lines for $\varepsilon_1/\varepsilon_0 = 2.25$ (glass-air interface) with a = 0.5b.

$$\langle *3 \rangle \equiv$$
 eps1=2.25;

a=0.5;

N=100; // set to even number to avoid atan singularties.

We work with a cartesian grid and set all points with r>1 to a potential of 1 Volt.

indx1 contains the indices corresponding to points in region 1 while indx2 contains indices corresponding to points in region 2. We now use Eq. 4 to compute $\phi(r,\theta)$.

The Electric field is along \vec{y} for this case (Scilab plots \hat{x} vertically and \hat{y} horizontally) inside the inner region, and connects to the wall potential in the outer region.

The reason for the Electric field being cartesian in the inner region is that $r \sin \theta = y$. So $\phi(r,\theta) \propto y$ which means that the Electric field is uniform and along \hat{y} , in the inner region. But in the outer region, there is also a term that goes like $\sin \theta / r$, which is definitely not along x or y.

Figure 1: Potential contours of solution