Uniqueness of field given its divergence and curl

23rd January 2007

There is a simple and a complicated proof of this theorm, which is called Helmholtz theorem. It states that, given $\nabla \cdot \vec{V}$ and $\nabla \times \vec{V}$, the field \vec{V} is uniquely determined. The simple proof is as follows.

Simple Version of Theorem

Let the $G(\vec{r})$ be curl of an unknown vector field and let $f(\vec{r})$ be the divergence, and suppose \vec{V}_1 and \vec{V}_2 be such that

$$abla imes \vec{V}_1 = G \qquad
abla \cdot \vec{V}_1 = f

abla imes \vec{V}_2 = G \qquad
abla \cdot \vec{V}_2 = f$$

Consider $\vec{U} = \vec{V}_1 - \vec{V}_2$. Then

$$\nabla \times \vec{U} = 0$$

$$\nabla \cdot \vec{U} = 0$$

Since the curl is zero everywhere, \vec{U} is a conservative field and we can define

$$\phi(\vec{r}) = -\int_{\infty}^{\vec{r}} \vec{U} \cdot \vec{dl}$$

where ϕ does not depend on the path of the integration. Then $\vec{U} = -\nabla \phi$. The zero divergence of \vec{U} then implies

 $\nabla^2 \phi = 0$

The boundary condition satisfied by \vec{U} at ∞ is that it goes to zero, which implies $\phi \to 0$ as $r \to \infty$. The unique solution to this problem is $\phi \equiv 0$, i.e., $\vec{U} \equiv \vec{0}$, i.e., $\vec{V}_1 = \vec{V}_2$.