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This derivation follows section 2.10 of the textbook. Consider a current loop of
radiusa, centered at the origin and carrying a currentI0.

Looking back to the solenoid calculation, we obtain the vector potential due to a
loop as
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The problem is to evaluate Eq. 1 whenR12� a.
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The best coordinate system to tackle this problem is the spherical polar coordinate
system(r,θ,φ). The integral involvesR12 which we must express in terms ofr, θ, φ
andφ′. We rotate the system tillφ = 0.

Let ψ be the angle between~r and~r ′. then

R12 =
√

r2 +a2−2racosψ

In the(r,θ,φ) coordinate system, the vector~r ′ is given by

~r ′ = acosφ′x̂+asinφ′ŷ
= acosφ′

(
r̂ sinθ+ θ̂cosθ

)
+asinφ′φ̂

Thus,
arcosψ =~r ·~r ′ = racosφ′ sinθ
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This allows us to expressR12 in terms of known quantities
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Taylor expanding Eq. 2, Eq. 1 becomes
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Only the cos2 φ′ term survives the integration and we obtain
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wherem is called the magnetic dipole moment of the loop. We take the curl of~A to get
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Using Eq. 3 this becomes
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This has exactly the same structure as the answer we get for the Electric Dipole:
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which gives for the Electric Field,
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