Far Field due to a Current Loop
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This derivation follows section 2.10 of the textbook. Consider a current loop of
radiusa, centered at the origin and carrying a currignt

Looking back to the solenoid calculation, we obtain the vector potential due to a
loop as
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The problem is to evaluate Eq. 1 whBg, > a.
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The best coordinate system to tackle this problem is the spherical polar coordinate
system(r,8,@). The integral involvedR;» which we must express in terms qf8, @
andq. We rotate the system tih= 0.

Let y be the angle betwedghandr’. then
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In the (r,0, @) coordinate system, the vectdiis given by
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This allows us to expred®;, in terms of known quantities
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Taylor expanding Eg. 2, Eg. 1 becomes
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Only the cod¢ term survives the integration and we obtain
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wheremis called the magnetic dipole moment of the loop. We take the cukitofget
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Using Eq. 3 this becomes
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This has exactly the same structure as the answer we get for the Electric Dipole:
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which gives for the Electric Field,
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