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We have the definition of curl from our earlier Physics course

∇×~B =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z

Bx By Bz

∣∣∣∣∣∣
Where does this definition come from? And what kinds of fields have non-zero

curl?

The Definition and Basic Properties

The curl of a field is defined as

∇×~V(~r) = lim
A→0

1
A

I
CA

~V · ~dl

whereCA is a closed contour around a surfaceA containing~r whose area is shrunk to
zero. What is so special about this quantity?

• We already know that path independence of integrals requires
H
~V · ~dl = 0 for

all closed loops. Thus, the ability to associate vector fields with a scalar field
representing an integral of the field depends on the field being “curl-free”.

∇×∇φ = 0

• Clearly, by the argument of tiling any surface with little loops, we have Stokes’
Law: I

CS

~V · ~dl =
Z

S
∇×~V · ~dS

• Equally clearly, since any two surfaces that link the same curveCS are equal to
the same line integral, we must haveI

SV

∇×~B· ~dS=
Z

V
∇ ·∇×~BdV = 0

So the curl of a field is divergence free.
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Examples

1. The Coulomb Electric Field

~E =− 1
4πε0

Z
ρ(~r ′)∇

1
R12

dV′

Taking the curl,

∇×~E =
1

4πε0

Z
ρ(~r ′)∇×∇

1
R12

dV′ = 0

2. A rigidly rotating fluid
~u(~r) = ωθ̂

~u· ~dl = 0

The loop integral now becomes for the loop shown in the figureI
~u· ~dl = uθ(r +dr) [(r +dr)dθ]−uθ(r) [rdθ] = ωdrdθ

The area of the small region isrdrdθ, and so

∇×~u =
ω
r

A rigidly rotating fluid has curl!

3. Viscus flow in a pipe. A fluid flows in a pipe of radiusa with velocity

~u(r) = u0

(
1− r2

a2

)
ẑ

Now we take a small square loop in ther-z plane, bounded byr, r + dr, z and
z+dz.

2



r +dr

z z+dz

r

r = a

r = 0

z+dz
θ

θ+dθ
z

uz(r) = u0

(
1− r2

a2

)
Since the flow is alongz, only the sides parallel to thez-axis contribute to the
integral. We get

∇×~u· ~dS=
I

~u· ~dl = [uz(r +dr)dz−uz(r)dz] =−2u0r
a2 drdz

If you draw out the loop, it will be clear that the normal points along−θ̂ (i.e.,
into the page). We could also draw a loop whose sides werez, z+ dz, θ and
θ+dθ. Only the sides parallel to thez-axis contribute to the integral. But now,

∇×~u· ~dS= uz(r,θ+dθ)dz−uz(r,θ)dz= 0

sinceuz does not depend onθ. Finally, if we created a loop with sidesr, r +dr,
θ, θ+dθ, we would get zero, since~u· ~dl = 0 on all four sides. So,

∇×~u =
2u0r
a2 θ̂

The Curl Formula

Clearly the definition of curl given above is a valid vector field:

• It has a well defined magnitude and direction.

• The values of magnitude and direction are defined in ways that do not change if
we rotate, translate or even scale our measuring instrument.

But it is an inconvenient definition for quick calculation (on the other hand it is perfect
for gaining intuition about what curl is). We need an algebraic formula.

Let us look at a vector field along ˆx only. Suppose it varies alongy. We imagine our
right hand rule creating a loop in thex-y plane. Then,

H
~u·~dl = (−u(y+dy)+u(x))dx

which means
∇×~u· ẑdxdy=−∂yuxdxdy

On the other hand, if the vector field were along ˆy and depended onx. Then the same
argument yields

∇×~u· ẑdxdy= +∂xuydxdy

If the field were along ˆx and depended onx, we would cancellation of the two arms of
the loop. Similarly for the ˆy component that depended ony.

What does this teach us?

• The curl points in the “third direction”

3



• if component varied along its own direction (i.e., identical directions for field
and variation of field), zero curl.

• if component varied along orthogonal direction, magnitude depends on right
hand rule.

Clearly all these rules are nothing but what we had for the cross product. This is why
we can write the curl as

∇×~B = det

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z

Bx By Bz

∣∣∣∣∣∣
To verify the last example above,

∇×~u =
1
r

det

∣∣∣∣∣∣
r̂ r θ̂ ẑ
∂r ∂θ ∂z

0 0 uz(r)

∣∣∣∣∣∣ =−θ̂∂ruz =
2u0r
a2 θ̂

The extra factors ofr come from the fact that~θ is not a distance but an angle. The scale
factors convertdθ to a distance are added in to give a generalized formula (see the text
book for details).
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