Boundary conditions at an Interface for Wave
Problems.
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Dielectric Interface

We know from Maxwell's Equations that at a dielectric interfdég H;, D, andB,, are
continuous. But the solution of the oblique wave problem works as follows:

¢ Incoming wave has only forward wave component, and that is specified by user
(i.e., the brightness and direction of his torch).

o Reflected wave has only backward wave component, whose amplitude and phase
are the only unknowns (one complex number).

e Transmitted wave has only forward wave component, whose amplitude and phase
are the only unknowns (one complex number).

So to fix two numbersr(= Er/Ei andt = Et/Ei) we have four conditions. Obviously
overdetermined! How can we resolve this?

Suppose we have continuity & andH;, the tangential components of the field.
Now, from Faraday’s Law, the normal componentfbis obtained from a tangential
loop of Electric Field:
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whereA is the area of the loop. Since the tangential Electric Field is continuous, the
loop integral is the same on both sides of the interface. Which mearBthatst also
be continuous.



Now consider Ampere’s Law, apply the same thinking to a loop integrél dfat
is tangential to the boundary.
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SinceH; is continuous, it follows thab,, must be continuous as well.
This is why we need only worry about the continuity of tangential components.
The normal components are automatically taken care of.

Conducting Boundaries

We can take two approaches here. Firstly, we can treat the conduction currents in full
detail. Then the dielectric boundary conditions above apply. The surface charge and
surface current density are solved for as a skin depth problem.

This approach is used when we want to solve for “Eddy currents” in devices. The
skin currents need to be solved for in detail, and we cannot approximate them as living
entirely on the surface.

The second approach is to assume that the conducting boundary is “thick” and that
scale lengths of interest are much larger than a skin depth. Then, we use the standard
arguments about taking narrow loops or “pill boxes” and obtaining the jump conditions
from the equations. The difference here is that we choose the loops or boxes to include
the entire skin current region.

1. Consider(-B = 0. The magnetic field inside the conductor is related to the
electric field via Faraday’s Law, which means that it is non-zero only in the skin
depth region. So we choose a pillbox that penetrates more than a skin depth and
obtain

B,=0 at the surface
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Similarly, taking a loop and applying Faraday’s Law to it, we obtain
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The other two boundary conditions become, following the same arguments

AxH = jsurface
and
Dn = Osyrface
whereag rigcdS the surface charge, arogiurfaceis the current integrated over several
skin depths.
How accurate are these boundary conditions? To determine that, we assume that
the fields are varying as 1%V along the traverse direction. Then, applyifgB = 0 to
a small cuboid oriented along We get a contribution from the sloping sides as well.

Specifically, the sides separatedyigive fluxes that do not add up to zero. Instead we
get

ik
Bn,surfacé + ByAsIoping(l— e yAy) =0
Now,
AslopingN Kk
A Ay
So, the condition becomes

Bn,surface: — (jkyd) By

So the condition is exact whdgd is zero, i.e., whed < )\l/Zn, it is a good approxi-
mation to assume
B,surface= 0

Exactly the same analysis applies in all four conditions. Since in practical waveguides
0 < A, these “ideal conducting wall” boundary conditions are commonly used in prac-
tice.



