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Abstrucf-Developments in the theory of linear least-squares estima- 
tion in the last thirty years or so are outlined. Particular attention is 
paid to early mathematical. wurk in the field and to more modem develop- 
ments showing some of the many connections between least-squares 
filtering and other fields. 

I. IN~~DUCTION AND OUTLINE 

T HE SERIES of survey papers of which this is a part 
was begun largely to commemorate the twenty-fifth 

anniversary of the publication of Shannon’s classic paper 
on information theory. However, 1974 is also twenty-five 
years after the publication in the open literature of Wiener’s 
famous monograph, “Extrapolation, Interpolation and 
Smoothing of Stationary Time Series, with Engineering 
Applications” [I], so that it is appropriate this year to 
commemorate this event as well. [As noted elsewhere in this 
issue, this month is also the tenth anniversary of Wiener’s 
death (March 18, 1964).] Not only was this work the direct 
cause for the great activity of the last three decades in signal 
estimation, but it was perhaps the greatest factor in bringing 
the statistical point of view clearly into communication 
theory and also control theory. It may suffice to quote 
Shannon’s own major acknowledgment: “Credit should also 
be given to Professor N. Wiener, whose elegant solution 
of the problems of filtering and prediction of stationary 
ensembles has considerably influenced the writer’s thinking 
in this field.” 

The subject of estimation is a vast one, and most of our 
attention will be devoted to the particular problems of 
linear least-squares estimation, or linear Jiltering as it has 
generally come to be called in the engineering literature. 
Even though least-squares estimation is clearly only a 
small part of the possible forms of estimation theory, in 
the author’s opinion it is perhaps the most interesting and 
most important part. Least-squares theory not only pro- 
vides useful solutions to certain specific estimation prob- 
lems, but it also has connections to and implications for a 
surprisingly large number of other problems, both statistical 
and deterministic. As some examples we mention signal 
detection [93], [291]; the calculation of mutual information 
in certain channels [303] ; the solution of integral equations 
[288], [292], two-point boundary value problems in many 
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fields; problems of scalar and matrix polynomial factoriza- 
tion with applications in network theory and stability 
theory [135], [177] ; the solution of linear equations, 
especially as they arise in constructing state-variable 
realizations from impulse-response or transfer-function 
data, which in turn is related to the Berlekamp-Massey 
algorithm for decoding BCH codes [289], [191]; and the 
inversion of multivariable linear systems [357], [361], 
[362]. There are also more purely mathematical ramifica- 
tions in Hilbert-space theory, operator theory, and more 
generally in functional analysis [245], [250], [261]. 

The section headings give a quick idea of the scope of 
the paper. 
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Needless to say, the choice of material and emphasis 
in this paper are m ine; the field is a vast one and can be 
surveyed in various ways. My main aims are to provide 
some perspective on presently used methods, to bring out 
the significance and relevance of some relatively early, 
but often neglected, work in this field, and to illustrate 
some of the connections between least-squares theory and 
other fields. 

In Section II we formulate the problem of determining 
the causal linear least-squares estimate of a signal process 
corrupted by additive white noise. Although this is only 
one of a large number of possible estimation problems, 
it is a key one in the sense that its solution underlies that of 
many others. 

Sections III-VI describe some of the current approaches 
to solution of this key problem. Information theorists and 
communication engineers have been more familiar with 
problems in which covariance information is given about 



KAILATH: LINEAR FILTERING THEORY 147 

signal and  noise, which are usually called W iener filtering 
problems. Control engineers deal more often with prob- 
lems where the signal and  noise are described by state-space 
mode ls, usually called Kalman filtering problems. Because 
of differing backgrounds, mutual knowledge of these two 
general  approaches is often small, and  one of our aims is 
to bring out the close and useful relation that must exist 
between these two approaches. O f course no  proofs can be  
given here, but the ma in results are stated and their signif- 
icance and role explained. Appropriate references are given 
for the proofs. 

The  discussion in Sections III-VI is fairly self-contained, 
but at various points allusions are made  to earlier results 
in the mathematical literature, especially of the forties. 
This work is explored in Sections VII and  VIII, partly for 
the record but really because it’contains ideas that in my 
opinion have still not yet been adequately appreciated and 
exploited. For example, the work of Krein (1944) and of 
Levinson (1947) is only now beginning to be  rediscovered 
and extended. Limitations of space again prevent any 
detailed discussion, but I have tried to provide some guidance 
for a  reader interested in further study. Moreover, even a  
casual reader m ight find some fascinating nuggets exposed 
here, al though I should stress that the lode is really much 
richer. 

In Section IX, I have described in somewhat more 
detail one  vein that I have personally found to be  very 
illuminating and powerful: the role of canonical or in- 
novations representations of random processes. Again I 
have given only references to many results and  applications, 
but I could not resist being a  little more specific about 
one  aspect; name ly, the connect ions to spectral factorization 
and to the so-called positive real functions of network 
and complex variable theory. The  aim is to show at least 
one  explicit connect ion between stochastic and  deter- 
m inistic problems. A fact I attempt to stress in Sections 
VIII and  IX is the importance of deterministic system 
structure in the theory of random processes. This is at the 
moment  an  active field of research, but one  that is being 
largely carried out in control theory. There is scope for 
many more communicat ion theorists to enter this field. 
Conversely, in the last section I have briefly referred to 
some recent results in information theory that have useful 
implications for estimation. The  time  seems to be  ripe for a  
fruitful symbiosis. 

Section X is a  brief look at the role and significance of 
series expansions. These should be  relatively more familiar 
to readers of this journal, and  I have therefore concentrated 
on  some special, but often overlooked, aspects of such 
expansions. The  section concludes in fact with an  indication 
of how certain random process ideas can illuminate the 
currently active system-theoretic problem of abstract state- 
space determination. Again there is scope for fruitful 
interaction with control and  system theorists. The  paper  
closes with the thought that it is the range and scope of 
such possibilities that has kept estimation theory vital and  
active, without, it seems to me, the above-average doubts 
and m isgivings that the more self-contained field of strict- 
sense Shannon theory has been exposed to recently. 

The  bibl iography is of necessity rather vast, al though 
it could easily have been even larger. On  several occasions, 
the availability of convenient bibl iographies has led me  to 
om it various references. This is undoubtedly an  injustice 
to the authors of many fine papers, but it seems to be  
unavoidable. I have attempted to do  more justice to papers 
publ ished in this journal, and  in fact all such linear filtering 
papers in the period 1968-1972 have been included in the 
bibliography, even though no  explicit reference may have 
been made  to them in the text. This has also been done for 
certain other papers appear ing in other journals that I 
feel contain some ideas or approaches that may appeal  to 
our readers. The  choice is of necessity rather subjective 
and any om issions should be  regarded as a  measure of my 
ignorance rather than a  conscious slight. 

The  bibl iography is organized under  five subheadings, 
though the division of papers between the five categories 
is on  occasion somewhat arbitrary, partly because the 
fields are of course not completely exclusive. In retrospect, 
some reassignments would really have been desirable, but 
I have not had  the courage or the time  to attempt them. 

I must repeat that the inevitable lim itations of time, 
space, and  personal knowledge are undoubtedly reflected 
in this survey. The  only palliative I can offer is that perusal 
of the various references will enable the reader to learn many 
additional facts and results that could not be  covered in 
the paper  and to make his own judgment of any controv- 
ersial matters. 

1I.A KEY LINEAR ESTIMATION PROBLEM 

Some Early History 
From the earliest times, people have been concerned with 

interpreting observations and making estimates and pre- 
dictions. Neugebauer  [370] has noted that the Babylonians 
used a  rudimentary form of Fourier series for such purposes. 
As with so much else, the beginnings of a  “theory” of 
estimation in which attempts are made  to m inimize various 
functions of the errors can apparently be  attributed to 
Ga lileo Ga lilei in 1632 [174]. Then  came a  whole series of 
illustrious investigators, including the young Roger Cotes 
(of whom Newton said “had he  lived, we m ight have known 
something”), Euler, Lagrange, Laplace, Bernoulli, and  
others. 

As is well known, the method of least squares was 
apparently first used by Gauss in 1795 [197], though it was 
first publ ished by Legendre in 1805 [198]. (It is less well 
known that Adrain in America, unaware of these develop- 
ments, independently developed the method in 1808 [196]). 
Since then, there has been a  vast literature on  various 
aspects of the least-squares method. A comprehensive 
annotated bibl iography of least-squares estimation for 
random variables has been given in a  report by Harter 
[375]. (See also a  brief survey by Sorenson [376].) Therefore 
we shall not go  into this here, but shall proceed to least- 
squares estimation in stochastic processes, the first studies 
of which were made  by Kolmogorov [207], [209], Krein 
[214], [215], and  W iener [l]. 

The  works of Kolmogorov and Krein were independent 
of W iener’s, and  while there was some overlap in the 
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results, their aims were rather different. Kolmogorov, 
inspired by some work of Wold [209], gave a comprehensive 
treatment of the prediction problem for discrete-time 
stationary processes. Krein noted the relationship of this 
work to some early work of Szegij [200], [201], on ortho- 
gonal polynomials, and extended the results to continuous 
time by clever use of a bilinear transformation. (We shall 
describe these results in more detail later (Section VII).) 

However, no special attention was paid to explicit 
formulas for the optimum predictor itself. Such formulas 
are obviously necessary for applications, and in fact, certain 
anti-aircraft fire-control problems led Wiener to formulate 
independently the continuous-time linear prediction problem 
and derive an explicit formula for the optimum predictor. 
He also considered the “filtering” problem of estimating a 
process corrupted by a “noise” process. An interesting 
nontechnical account of this work and its background and 
development was given by Wiener in his autobiography 
[371, pp. 240-2621. 

Wiener constantly attempted to examine and stress the 
engineering significance of his ideas and results and his 
book [l] contains several explicit examples, which are still 
generally the only ones to be found in many textbooks on 
the subject. Wiener was also conscious of the problems of 
actually building circuits to implement the theoretical 
solutions. For example, he notes that “The detailed design 
of a filter involves certain choices of constants which must 
be justified economically. In general, it does not pay to 
eliminate a small error from a quantity when there is a 
large irremovable error in it.” Another paragraph of his 
book is entitled “The Determination of Lag and Number 
of Meshes in a Filter.” Partly because of such concerns, 
much of Wiener’s work, despite its hard mathematics, 
has had a wide influence in engineering circles. 

A Key Problem 

As we begin to be more specific, we are immediately 
confronted with the fact that there is a large variety of 
estimation problems, even just linear ones. For example, 
as the reader knows, we can have prediction or filtering or 

However, this breaks down in feedback communication 
and feedback control problems where the signal z( *) may 
be influenced by past signal and noise. Therefore, a more 
general assumption is that 

Ez(t)v’(s) = 
l 
arbitrary, t2s o 

7 t < s. (4) 

It should be stressed that (4) can be introduced only with 
difficulty in many of the analyses found in the literature; 
for example, it cannot be directly handled by methods that 
rely on representing the signal and noise processes z(e) 
and v(e) by Karhunen-Lo&e expansions. (See Section X 
for further discussion of this point.) 

To proceed with our description, let us define 

K(t,s) = E[z(t)z’(s) + z(t)v’(s) + v(t)z’(s)]. (5) 

Note that K( -, a) is generally not a covariance, unless z(e) 
and v(a) are uncorrelated. However K( *, *) does determine 
the covariance function of the process y(e) as 

R&s) = Ey(t)y’(s) = Z&t - s) + K(Q). (6) 

We shall require that R,(t,s) be strictly positive definite on 
the square [t,,t,-] x [to,tf]. Other assumptions will be 
that the signal process has finite expected energy and that 
K(t,s) is continuous, though both of these assumptions 
can in fact be relaxed; the essential thing is really that 
K(t,s) be “smoother” than 1,&t - s). (See also [327c].) 

The problem is to determine a random variable 2(t 1 tf) 
of the form 

s 
tf 

2(t 1 tf) = H(t,M4 dr, to I t I tf (7) 
to 

so that 

tr E[$t) - z^(t)][z(t) - i?(t)]’ = m inimum. 

It is by now well known (see, e.g., [lo]) that such an optimum 
linear least-squares estimate is characterized by the “ortho- 
gonality” property 

E[z(t) - % t I tJ]y’(s) = 0, tq I s I tf 63) 
smoothing problems, in state-variable form or transfer- 
function form, with additive white noise or colored noise, 

so that a simple calculation shows that the optimum filter 

etc. However, in my opinion there is a key l inear estimation 
H( -, *) is determined by the solution of the integral equation 

problem in the sense that its solution can be shown to 
s 

ff 

underlie that of many other problems (see [298], [181], H(tYs) + H(t,z)K(z,s) dz = Ez(t)z’(s) + Ez(t)v’(s), to 
for some examples): we have observations y(a) of a signal t, I t, s I tp (9) 
process z( *) in additive white noise v( *) 

Y(S) = 4s) + VW, (1) 
Depending on whether tf c t, tf = t, or tf > t, we have to I s )I tf what are called predicted, filtered, or smoothed estimates, 

where 
(2)’ 

respectively. For convenience, we shall write 2(t 1 t) as 
Ev(t)v’(s) = Z$(t - s). t 

The usual assumption on z(e) is that it is uncorrelated with If(t) = h(t,sM) ds. 
4.) 

s to Ez(t)v’(s) = 0. (3) Using (8) and (4), the relevant integral equation forfiltering 
can be found as 

1 Some notational conventions: all random variables will be assumed 
to have zero mean. No special notation will be used to distinguish 

matrix. We could have assumed any strictly positive-definite matrix s 

t 
scalars and matrices; primes denote transposes; ZP is a p x p identity h(t,s) + h(t,z)K(z,s) dz = K(t,s), to 5 s I t I tp 
instead of ZP, but by a normalization we can return to the case des- to 
cribed by (2). (10) 
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This is a key equation in linear system theory. 
It is important to note that (10) is substantially more 

difficult to solve than (9). Equation (9) is a  Fredholm 
integral equat ion of the second kind and a  lot is known 
about its properties. Several general  solution methods are 
available, including reduction in different ways to a  set of 
l inear algebraic equat ions and the use of various gradient 
methods, see, e.g., [51], [37], [18], [27]. On  the other hand, 
(10) is a  much more difficult equat ion because of the con- 
straint that s I t. This is seen most dramatically by taking 

P = 1, t, = -co, tf = +a, fqt,s) = K(lt - sl) 

in which case it is easy to see that in both (9) and  (10) the 
solution h(t,s) depends only on  It - sl. Then  with an  
obvious change of variables (9) can be  reduced to 

H(t) + s m H(z)K(t - z) dz = x(t), -m<t<cO 
-0D 

which can be  readily solved by Fourier transformation. 
However, the corresponding form of (10) is 

h(t) + s m h(z)K(t - z) dz = K(t), 0 < t < co (11) 
0 

which is quite a  different thing. Simple Fourier transforma- 
tion does not work, and  we must in general  use the cele- 
brated W iener-Hopf spectral factorization technique [2]- 
[4], which in fact has given (11) its name. 

The  W iener-Hopf equat ion (11) first arose in astro- 
physics in 1894 and has been widely studied; see especially 
two comprehensive papers [234], [235], which deserve 
to be  more widely read by engineers. On  the other hand, 
much less is known about the nonstationary version (lo), 
which we shall describe as being of W iener-Hopf type.2 
Several references are collected in [257], [51], [298], and  
some of these will be  brought up  as we proceed with this 
survey. However, it is appropriate to begin with (ll), 
which was where W iener started. 

III. W IENER FILTERS AND EARLY GENERALIZATIONS 

The first explicit solutions for least-squares estimates of 
stochastic processes were given by W iener in 1942 [l] 
under  the assumptions of a  scalar observation process 
(p = I), a  semi-infinite observation interval (to = -co), 
and  jointly stationary signal and  noise processes. W iener 
used a  variational argument to determine the opt imum 
estimate and was delighted to find that what was required 
was the solution of the W iener-Hopf equat ion (ll), a  
problem to which Hopf and  he  had ten years earlier con- 
tributed an  elegant solution [2]. The  method applies to 
quite general  kernels, but, as W iener himself noted, it 
took its simplest form for processes with rational spectral 

2  One  might argue that (10) is just a  family of Fredholm equat ions, 
indexed by f. This is true, but the major problem lies in showing that 
the solutions {I@,.)} can be  satisfactorily fitted together, for example 
to make h(.,.) square-integrable in both variables. 

densities, for which K(t,s) had the form 

K(Q) = Ic(lt - sl) 

= i ai exp (-PiIt - 51) 
1 

I 
” 

C %  exp (-Pit> exp (Pis>9 t 2  s (12a)” 
= 1 

1 
i %  ew (-PP) exp (Bit>2 t<s (12b)3 
1  

where the {Di} are constants, possibly complex. For such 
kernels, the bilateral Laplace transform 

m  S,(s) = s 
[d(t) + K(t)] exp (-St) dt (13) 

-co 

is a  ratio of polynomials in s2, whose zeros display a  
quadrantal  symmetry in the complex s-plane: every root 
of the form c + jo is accompanied by roots of the form 
a-jq -IS f jo. By virtue of this root distribution, we 
can make a  unique factorization of S,,(s) as 

S,(s) = s, + (s)S, + ( - s) 

where the so-called canonical factor is 
04) 

sy+(s) = $ Cs - zil/fI Cs - Pi> (15) 

and {Zi} and  {pi} are the left-half-plane zeros and poles 
of S,,(s), Re zi < 0, Re pi < 0. The  W iener-Hopf tech- 
nique (see, e.g., [4], [20], [51]) shows that this factoriza- 
tion completely determines the Laplace transform of the 
opt imum filter as 

H&s) = 1 - [S,+(s)]-‘. (16) 

This expression, though implicit in W iener’s own examples, 
was first explicitly given by Yovits and  Jackson [l I] and  
by Krein [235]. 

Yovits and  Jackson also gave a  closed-form expression 
for the mean-square error in the special case of uncor- 
related signal and  noise 

E[z(t) - L(t)]” = /a In [l + S,(io)] do. (17) 
-ccI 

Since (17) does not require explicit knowledge of the 
opt imum filter, it can be  used to help decide if an  opt imum 
filter is worthwhile; several such applications in modu lation 
theory have been discussed by Van Trees [40], [47], 
Stiffler [46], Lindsey [52], and  the references therein. 
Recently Yao [48], [49], and  Snyders [54], [54a], have 
extended this formula to cover certain problems with non- 
white noise, and  signals or noise with nonrational spectra 
(see also Prouza [53]). 

W iener’s theory has ma inly been appl ied to the opt imum 
choice of various components in modu lation systems, as 
we have noted previously. W e  should explicitly ment ion 

3  This is not the most general  form except when the poles {pi} in 
(15) are distinct; the general izat ion is not difficult but is notationally 
cumbersome and  so has been  avoided. 
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a notable early application to the design of loop filters in of the first to tackle this problem, and he presented some 
phase-locked loops [9]. Related applications were also useful recursive algorithms [61], [80], [I.% ], that were 
made in optimal control (see [13], [24], and the references soon recognized and applied, especially by a group at the 
therein). Bell Laboratories, who added various contributions of 

Some Generalizations 

The Wiener-Hopf equation was soon extended to cover 
estimation of stationary processes given only over a finite 
observation interval (to > - oo), and more generally to 
cover the estimation of nonstationary processes. However, 
while it was not hard to discover that the general equation 
was of the form (IO), there was no general method for 
solving such equations, and therefore a host of special 
results and techniques were developed. We especially 
mention an early paper by Zadeh and Ragazzini [6], 
which we shall encounter again in Section VIII. For 
processes with rational power-spectral densities, fairly 
explicit results were obtained by Yaglom [lo], Hajek [243], 
Rozanov and Pisarenko [31], Whittle [32], Helstrom [33], 
and Slepian and Kadota [43]. 

Some solutions were also obtained for nonstationary 
processes [6], [7], [17], [21]. The most useful of these 
were by Shinbrot [14], [25], who however found it neces- 
sary to restrict attention to K( +, a) of the form 

t 2 S (184 

K(Q) = I 
$ ai(t>bi(s>, . 

\ 
$ ai(sPi(t>, t I s. (18b) 

This is clearly a generalization of (12), but its true signif- 
icance was not appreciated until later (see Section V). 
Despite such important contributions, however, too large 
a part of the literature dealt with m inor variations and 
special cases, so much so that Elias felt compelled to edito- 

their own [84]. For different reasons, growing out of his 
successful application of state-space ideas in deterministic 
problems, Kalman developed [64], [68], [69], a somewhat 
more restricted algorithm than Swerling’s, but it was one 
that seemed particularly matched to the dynamical state- 
estimation problems that were brought forward by the 
advent of the space age. Groups at the NASA Ames 
Laboratory [71], [72], and at the M .I.T. Draper Labora- 
tories [70], [83], took up Kalman’s ideas and developed 
them into programs that were successfully used in many 
space applications [139], [145], [138]. 

We shall examine the Kalman filter in some detail in 
Section IV. The reasons for our attention go beyond the 
specific algorithm and are more broadly connected with the 
importance of dynamical structure in data-processing 
algorithms. Unfortunately communication engineers and 
information theorists have lagged behind control engineers 
in appreciating this fact, though, as pointed out in Wong’s 
recent survey [327], the gap is closing. 

IV. KALMAN FILTERS 

Kalman [64], [68], [69], changed the conventional 
formulation of the problem by giving, not the covariance 
of the signal process, but a “model” for it as the output 
of a dynamical linear system driven by white noise. Specific- 
ally, he assumed that the signal process z(a) could be 
described by 

4) = fww t 2 to W> 

i(t) = F(t)x(t) + G(t)@), x(t,) = x0 (19b) 
rialize in the IEEE TRANSACTIONS ON INFORMATION THEORY 
in 1958 that it was time to stop writing “two famous papers.” where x(.) is an 12 x 1 “state” vector and u(s) is an m  x 1 

One was “The Optimum Linear Mean-Square Filter for random input such that 

Separating Sinusoidally-Modulated Triangular Signals from 
Randomly-Sampled Stationary Gaussian Noise, with 
Applications to a Problem in Radar.” (The other was 
“Information Theory, Photosynthesis, and Religion,” a 
title suggested by D. Huffman.) 

Furthermore, there were other reasons for being dis- 
satisfied even with the most significant of the results of this 
period. 

i) They were rather complicated, often requiring the 
solution of auxiliary differential and algebraic equations 
and the calculation of roots of polynomials. 

ii) They were not easily upd.ated with increases in the 
observation interval. 

Also the matrices F(a), G(e), H(e), Q(m), and II, are 
assumed known and continuous. In trajectory estimation 
(19b) could be the “linearized” equations of motion 
describing the evolution of the position and velocity vector 
x(e) subject to the wideband perturbations u(v) caused by 
random drag, gravitational uncertainties, etc., and the 
initial uncertainties x0. 

iii) They could not be conveniently adapted to the vector 
case (p > 1). 

The assumption that x0 and u(.) are uncorrelated not 
only is physically reasonable but also has the important 
consequence that the process x(e) is now a wide-sense 
Markov process [225]. Kalman also assumes that the 
“plant” noise u(a) and the “observation” noise v(e) in the 
observed process These last two difficulties came immediately to the fore 

in the late fifties in the problem of determining satellite 
orbits. Here there were generally vector observations of 

Eu(t)u’(s) = Q(t)@t - s) (19c) 
Exoxo’ = lx,, Eu(t)xo’ = 0, t 2 t,. (19d) 

y(t) = z(t) + v(t) = H(t)x(t) + u(t) (20) 

some combinations of position and velocity, and also can be correlated, but he restricts the dependence to being 
there were large amounts of data sequentially accumulated of the form 
with each pass over a tracking station. Swerling was one Eu(t)u’(s) = C(t)cs(t - s) (21) 
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which is consistent with our more general  earlier assumption 
(4) on  the one-sided dependence between z(a) and  a( a). 
The  equat ions (19)-(21) describe the Kalman mode l for 
the estimation problem. The  Kalman filter is not given 
by an  explicit formula for the impulse response of the 
optimal filter, but as an  algorithm suitable for direct 
evaluation by analog or digital computers 

.2(t) = H(t)A(t) (22) 
where 

R(t) = F(t)A(t) + IL(t)@), a&)> = 0  (23) 
E(t) = y(t) - .2(t) = y(t) - H(t)lZ(t) (24) 

K(t) = P(t)H’(t) + G(t)C(t) (25) 
and  the n  x y1 matrix P(a) is the covariance matrix of the 
errors in the state estimates 

P(t) = Eqt)n’(t), z?(t) = x(t) - R(t). 06) 

P( *) can be  computed as the unique solution of the non- 
linear differential equat ion 

P(t) = F(t)P(t) + P(t)F’(t) - K(t)K’(t) + G(t)Q(t)G’(t), 

P(to) = II,. (27) 

This equat ion is a  matrix version of the familiar Riccati 
equation, first introduced by Francesco, Count Riccati, in 
1724 [I951 and since then often encountered in the calculus 
of variations. It seems surprising that a  nonl inear equat ion 
should arise in a  linear problem and be  regarded as advan- 
tageous. However, the point is that it is a  difSerentia1 iqua- 
tion with known initial conditions, and  such equat ions are 
comparatively easy to solve on  a  digital or analog computer 
because they involve only the iteration of relatively simple 
updat ing operations. This circumstance is indeed a  very 
happy one, because Riccati equat ions can be  introduced to 
solve general  l inear two-point boundary value problems, 
which arise often in various fields, see, e.g., [146], [247]. 

Discrete-Time Results 

The discrete-time Kalman filter results were actually, 
the first to be  obtained, partly because the ma jor system- 
theory activity in the m id-fifties was in the field of sampled- 
data systems, which arose when modern digital computers 
were put into control and  communicat ion links. Sampled- 
data filters for least-squares estimation were given by 
Franklin [S], Fr iedland [60], and  others. W h ile Friedland 
used infinite triangular matrices, Blum [59], [67], studied 
recursive filters for lim iting the storage requirements of 
such algorithms. W e  have already noted the work of 
Swerling [61]. Kalman’s contribution was to introduce 
state-space mode ls. He assumed that 

where {@,T,H,Q,R,C,II,} are known matrices. The  Kalman 
filter solution is 

jz i+lli = @ i2ili-1 + Ki(Ri”)-l&i, R,,-1 = 0  (294 
Ei = yi - 2ili-1, 2ili-1 = Hijlili-1 (29b) 

Ri” = EEiEi’ = HiPili_lHi’ + Ri, 

Pili-1 = E~ilI-1~i’I-1 (29~) 

Ki = ~Pili-,Hi’ + riCi (294 

where the IZ x IZ matrix 

f’ili-1 A E[Xi - ~i~i-l][Xi - Rili-l]’ 

can be  computed via the so-called Riccati difference 
equat ion 
P. 1+1/i = ~iPi,i-l~i’ - Ki(Ri”)-lKi’ + r,Qiri’, 

P,,-1 = rr,. (30) 

The similarity of this set of equat ions to (22)-(27) is clear; 
in fact, the latter can be  obtained from (28), (29) by a  
lim iting procedure [68]. Note that because of the presence 
of the PiI i- , -dependent term RF, the discrete-time formulas 
are somewhat more complicated than the continuous- 
time  ones, or even than discretized versions of the con- 
t inuous-time formulas. Moreover, in discrete time, there 
is no  particular need to assume that the covariance of the 
addit ive-noise is nonsingular, and  we have therefore written 
it as Ri rather than as I. Note that we could even take Ri 
to be  zero without affecting the formulas (29), (30). This 
is not possible in cont inuous time, where problems with 
no  nonsingular white noise component  require more care 
(cf. [90], [122], [I811 and the references therein). The  
study of state-estimation problems where there is no  additive 
noise has recently uncovered some interesting differences 
between discrete- and  continuous-t ime estimation and 
control problems (cf. [ 1701, [ 1791). 

By now the Kalman filter is widely known and widely 
used, notably in aerospace engineering; see, for example, 
the papers and references in the survey volumes [ 1391 
and [145]. Furthermore, (19)-(30) have turned out to have 
a  fundamental  role in understanding the structure and 
properties of dynamical systems, in many stochastic and  
deterministic problems. W e  may refer to work in quadratic 
optimization, stability theory, network theory, covariance 
and spectral factorization, stochastic control, sensitivity 
analyses, signal detection, etc. (The factorization problems 
will be  briefly discussed in Section IX.) W e  forebear from 
giving specific references, but shall merely note some recent 
books in which such topics are covered [106], [128], [129], 
[132], [135], [143], [153], [157], [177]; it should be  noted 
that Kalman himself launched the study of several of these 

yi =  Zi +  V’ I9 Zi = HiXi, i20 (28a) questions. 

Xi+1 = ~iXi + I-pi (28b) h  
However, despite all the good that has come out of this 

t eory, there have been many excesses and oversights in 
EuixO’ = 0 z EvixO’, ExOxO’ = l-I,, (284 its pursuit, partly reflected in an  incredible volume of 

Euiuj’ = Qisij, EUiVj’ = Risij, EUiVj’ = CiSij 
papers. Although some of this literature was necessary and 
worthwhile, a  good fraction of it must be  attributed to the 

(28d) general  expansion of technological and  especially space 
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activity that Sputnik and the Apollo project brought to 
America scene, in terms both of research and development 
contracts for industry and of the rapid expansion of graduate 
education in universities. Another factor was that this 
period coincided with the emergence of what is now called 
modern control theory, which was being built upon the 
rediscovery of the importance, emphasized in the m id- 
fifties by Bellman, of the notion of “state.” The fact that 
the Kalman filter dealt largely with state-estimation made it 
comparatively easy to include it in books and courses in 
state-variable theory, without having to go very deeply 
into estimation theory or even into Wiener filtering. 

Although several excellent examples of the clever and 
successful application of control theory ideas to estimation 
prob1emscanbefound,e.g.,[74],[111],[128],[133],[148], 
[84a], [193a], the majority of contributions have suffered 
from having too narrow a base. I feel it is unfortunate that 
a whole generation of control engineers has grown up whose 
only knowledge of estimation theory is through Kalman 
filtering. The work of Kolmogorov, Krein, Wiener, 
Karhunen, Levinson, Levy, Hida, and others (see Section 
VII) on many still important aspects of estimation has 
generally been neglected, not without loss. On the other 
hand, I should also state that in my opinion, the potential 
of the results and insights in the just-cited control-theoretic 
ideas has also not yet been fully exploited. 

It may be useful to reinforce the previous comments by 
giving an illustration from control theory itself. As Kalman 
has often stressed [68] the major contribution of his work 
is not perhaps the actual filter algorithm, elegant and 
useful as it no doubt is, but the proof that under certain 
technical conditions called “controllability” and “observ- 
ability,” the optimum filter is “stable” or “robust” in the 
sense that the effects of initial errors and round-off and 
other computational errors will die out asymptotically. 
However, the known proofs of this result are somewhat 
difficult, and it is significant that only a small fraction of the 
vast literature on the Kalman filter deals with this problem. 
(Significant recent contributions have been made in [126], 
[ISS], [167], [151], [188].) Th e concepts of controllability 
and observability actually first arose as technical conditions 
in certain optimal control problems [ 1191. They also enter 
in a fundamental way [76], [119], in characterizing ir- 
reducible transfer functions and m inimal state-space 
realizations of linear systems. Kalman isolated these notions 
and, for conceptual and other reasons, also de’fined them 
in terms of certain idealized but simple control problems; 
e.g., he observed that controllability is equivalent to being 
able to take an arbitrary initial state to the origin [62]. 
However, such definitions are only somewhat incidental, 
and their main justification lies in the theorems that can be 
proved with them. Nevertheless, many textbooks deal 
largely with examinations and elaborations of the definitions 
of controllability and observability, with hardly a mention 
of the associated theorems as being the reasons for this 
great attention. Information theorists may recognize 
similarities to the fate of the words information and 
entropy! 

In my opinion, it was the peculiar atmosphere of the 
sixties, with its catchwords of “building research com- 
petence,” “ training more scientists,” etc., that supported 
the uncritical growth of a literature in which quantity and 
formal novelty were often prized over significance and 
attention to scholarship. There was little concern for fitting 
new results into the body of old ones; it was important to 
have “new” results! Wiener had some interesting comments 
on the scene as early as 1956 [371, p. 2711. 

Despite this unfortunate historical context, one should 
not underestimate the significance of. the Kalman filter, 
which, to repeat, is more than just a solution to a specific 
estimation problem. As a tribute to this work, I now attempt 
to add my view concerning the slight controversy that 
exists as to its origin. 

Historical Notes on the Kabnan Filter 
Recursive solutions to least-squares problems are not of 

recent origin. Gauss was forced to invent them to handle 
the vast calculations he undertook in order to help astron- 
omers locate the asteroid Ceres. His work dealt with the 
discrete-time model (28), where, however, the state Xi was 
constant (i.e., CD and I were zero). Given hindsight one can 
generalize this work to handle dynamics and, for example, 
Rosenbrock has done this in his interesting note [92], 
(see also a note by Genin in [139]). Incidentally, Whittle 
in 1963 [32, p. 353 pointed out that the classical Wiener 
filter could be rewritten in a recursive form as a differential 
equation, and he also studied some nonstationary ex- 
tensions [95].4 

However, the general case was first studied by Kalman 
[64], who combined state-space descriptions and the notion 
of discrete-time innovations, as described for example in 
Doob [225, especially sects. XII.1 and X11.31, to give a 
complete and elegant solution. Kalman’s solution also 
introduced a nonlinear recurrence equation (30) which 
was the discrete-time counterpart of a Riccati differential 
equation he had already encountered in studies on quadratic 
m inimization problems in optimal control [63]. From this 
it was an easy step to obtain the continuous analog of the 
discrete-time equation for the least-squares estimate, 
especially since Kalman also recognized a “duality” be- 
tween the filtering and control problems. An immediate 
bonus of his analysis of the steady-state behavior of the 
Riccati equation in optimal control was the important 
result that, under the previously mentioned technical 
conditions of “observability” and “controllability,” the 
finite-time solution converges to a unique steady-state 
solution, independent of the initial condition and of errors 
introduced during the computation. [This stability question 
did not arise in the classical Wiener problem, which roughly 
speaking, corresponds to a Kalman filter problem with the 
F(-) matrix in the state-space signal model (19) constant and 
stable (i.e., having eigenvalues with negative real parts). 

4 Whittle [32], [95], used difference equation (autoregressive- 
moving average) models, and interestingly enough it is only recently 
that several advantages of such models have been fully appreciated 
(see the discussion at the end of Section IX). 
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Therefore, the signal variance goes to a  steady-state value 
and it can be  shown that SO does the (always smaller) 
variance of the error. It is a  striking fact, at least without 
further thought, that the error variance goes to a  finite 
steady-state value under  the structural condit ions of con- 
trollability and  observability even if F is unstable, so that 
the signal variance becomes unbounded.]  

In view of these facts it seems fair to use the name Kalman 
filter for the continuous-t ime algorithm as well as for its 
discrete-time analog. The  continuous-t ime filter is often 
also called the Kalman-Bucy filter, or sometimes the Bucy- 
Kalman filter (see Part I of [113] and  also [136]). Bucy’s 
coauthorship in Kalman and Bucy [69] grew out of some 
early work by Carlton and Follin [56] and  Hanson [57], 
at the Applied Physics Laboratory of Johns Hopkins 
University, in which algorithms of the Kalman type were 
obtained for some special cases. Kalman’s discovery of the 
general  continuous-t ime formulas was apparently in- 
dependent  of this, being based as we have noted on  analogies 
with optimal control [63]. Later Kalman obtained a  direct 
derivation by applying a  lim iting argument to the discrete- 
time  formulas [68]. Bucy’s important contribution to the 
joint paper  [69] was a  derivation using the finite-time 
W iener-Hopf equat ion (10). It should also be  noted that 
Siegert in 1953-1955 [58] had  already shown in a  different 
context that finite-time W iener-Hopf equat ions could be  
solved by reduction to a  Riccati differential equation. 

It is also not so widely known that, independently of all 
this, Stratonovich in the USSR had begun to study recursive 
solutions for nonl inear least-squares estimates of the states 
of a  nonl inear dynamical system driven by white noise. 
In this connection, it is natural to consider the l inearized 
problem and its solution, and  in so doing Stratonovich 
in 1960 also obtained the Kalman filter equat ions ([65], 
[141, p. 6751). However, no  stability analysis was 
undertaken. 

W e  should also mention that with hindsight one  can 
specialize certain recursive formulas obtained in 1958 by 
Swerling [61] for nondynamical  systems to again obtain 
the Kalman filter. Swerling did not actually explicitly 
consider this special case, nor did he  anywhere have a  
Riccati equation. However, as noted earlier, Swerling’s 
papers [611, [1551, contain several useful and  interesting 
ideas, for l inear and nonl inear filtering, many of which 
have been widely overlooked. [One such idea will be  
encountered in Section X.1 

As a  final comment  on  this topic, we may note that in a  
little known 1944 paper  [213] (unfortunately not cited in 
his 1953 book, but added by Yaglom to the 1956 Russian 
translation) Doob made  explicit and  effective use of l inear 
state-variable mode ls to study processes with rational 
spectral density. This paper  (see also [219]) contains several 
formulas and results that were rediscovered much later 
in the state-space literature. 

V. RECURSIVE W IENER FILTERS 

Kalman replaced the conventional specification of the 
filtering problem in terms of signal and  noise covariance 
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functions by one in which state-space mode ls were specified 
for the signal and  noise, and  it seemed to many that this 
difference in specification was the chief reason for the 
success of the Kalman filter. Therefore, it was thought that 
to obtain similar computationally efficient recursive 
solutions for problems with covariancz information one 
should first deduce state-space mode ls consistent with the 
given covariance specifications, to which the Kalman 
solution could then be  applied. Unfortunately, the problem 
of determining such state-space mode ls for nonstationary 
processes, which include stationary processes observed 
over finite time  intervals, is quite difficult. Most known 
solutions require an  amount  of work roughly equivalent 
to that involved in solving the Riccati equat ion for a  
process with an  already known signal mode l. Thus it 
appears in effect that the price paid for starting with 
covariance information rather than mode l information is 
essentially a  doubl ing of work. 

However, this is not true. W ith a  proper formulation, 
the same amount  of computat ion suffices to solve either 
problem. More specifically, suppose that we return to 
Shinbrot’s covariance specification (18), which we shall 
rewrite more compactly in matrix notation as 

K&s) = A(t)B(s)l(t - s) + B’(t)A’(s)l(s - t) (31) 

where A(*) and  B’( *) are p  x n  matrices and I(*) is the 
Heaviside unit step function. The  mean ing of this assump- 
tion, which as stated earlier Shinbrot was forced to make 
for purely mathematical reasons, is that this is the form 
that K(t,s) = E[z(t)z’(s) + z(t)v’(s) + v(t)z’(s)] must take 
for the processes z(a) and  v(e) in a  state-space mode l 
(19), (20). 

Before proceeding, it will be  convenient to rewrite K(Q) 
in the form 

K(t,s) = M(t)cD(t,s)N(s)l(t - s) 

+ N’(QD’(s,t)M’(s)l(s - t) (32) 

where @(a ;) is a  so-called state transition matrix def ined 
[106] as the unique solution of the linear differential 
equat ion 

d@( t,s) - = F(t)Q(t,s), 
dt 

@(s,s) = z (33) 

and F(a) is an  arbitrary matrix that can be  chosen con- 
veniently for the problem at hand. There is no  loss of 
generality in doing this because Q(. , .) is nonsingular and  
obeys cD(t,s) = @(t,t,,)@(&,,s) 
F(e) is constant 

Q(Q) = exp F(t - s) 

4 I + F(t - s) 

for an  arbitrary t,. When 

+ F2 (t - sj2 + . . .* 
2! 

(34) 

For a  given F(a), the correspondence between (29) and  
(30) is established by the relations (with to arbitrary) 

A(t) = WYW,), B(t) = w,,tw(t) 

M(t) = A(t)@(t,,t), iv(t) = cD(t,t,)B(t). 
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Now it is shown in [I491 (see [292], [105], [144], for earlier 
efforts) that the estimate 2(e) can be calculated by the 
following recursive algorithm : 

w = ~WW (354 
where 

d(t) = FWV) + W)b(t) - M(tM(t)l, 

K(t) = Iv(t) - C(t)M’(t) 

Ii(t) = F(t)C(t) + E(t)F’(t) + K(t)K’(t), 

4(to) = 0 
Wb) 
(364 

qt,> = 0. 
Wb) 

The equation for E(e) is again an IZ x n nonlinear matrix 
differential equation of Riccati type. It is different from the 
Riccati equation (26) of the Kalman filter, though it is 
closely related [149]. As expected, (32)-(35) reduce to 
the Wiener filter formulas (1 l)-(16) in the special case 
p = 1, t, = - co, and K(t,s) a function only of It - sl. 
Thus we have now found the recursive generalization of 
the Wiener filter. To put it another way, we can now see 
how to make Shinbrot’s integral equation solution recursive. 
A proof of these results is outlined in (128)-(133) of Section 
IX. (The discrete-time version of these equations can be 
found in [180].) 

The important point is that the equations for C( *) and 
z^( *) can be directly written down from the covariance 
specifications without first having to determine a state- 
space model. Thus both specifications, in terms of covar- 
iances or in terms of state-space models, are seen to be 
equivalent, not just in that they give the same final answer 
(because, of course, they must), but in that their solutions 
involve comparable amounts of work. The choice between 
them lies purely in whether state-space models or covariance 
specifications are more readily at hand. This fact is still not 
widely appreciated and the literature contains many dis- 
cussions of attempts to “identify” state-space models from 
covariance data so as to be able to use a Kalman filter. 

Nevertheless, “modeling” is, as in all subjects, a thorny 
problem and we should say a few more words about it 
here. State-space models are often at hand in aerospace 
problems, where we may have enough information to write 
down the equations of motion, whether they be time 
invariant or time variant. However, the choice of the 
proper number of states to model a given problem ad- 
equately is not always an easy one. In many problems of 
industrial process control and communications, it is 
generally impossible to write down state equations (as is 
clear if we try to do so for a large power grid, or chemical 
plant or a telephone-line channel) and recourse has to be 
had to terminal measurements, for example of the covariance 
function or power spectrum of the channel output. Now 
covariance estimation is itself a vast subject, but even if we 
assume that good estimates are available, K(t,s) will be 
available only as a numerical function of t and s and not 
in the factored form (31) or (32); getting the functions 
{A(*),B(*)} or {M(*),@(*;),N(*)} involves a further step 
of approximation. How can this be done? In the stationary 
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case, where A( a) and B(a) are exponential functions, we 
have basically the classical network-theory problem of 
approximating a time function by a sum of exponential 
functions (or, in frequency-domain terms, approximating 
a function by a ratio of polynomials). A modern version 
of this broblem is that of obtaining minimal state-space 
realizations from measurements of transfer functions. There 
are now several methods available for doing this, and in 
fact research into more efficient methods is still going on 
(see, e.g., [129], [360], and the references therein). How- 
ever, this is only for the stationary case. Although certain 
analogous procedures can be devised for the nonstationary 
case [112], in general it is a difficult matter even in network 
theory to obtain time-variant system realizations. 

For this reason, and also because attention is shifting 
away from aerospace problems, there is renewed interest 
in time-invariant models. Such models have generally been 
the only ones studied by statisticians and communication 
engineers, and recent research in control and system theory 
has taken a big swing in this direction. 

VI. NEW ALGORITHMS FOR TIME-INVARIANT SYSTEMS 

When the parameters in the Kalman state-space model are 
constant (time invariant), it has recently been discovered 
that one can obtain recursive solutions without going 
through a Riccati equation, and in several problems it is 
possible to obtain significant computational advantages 
thereby (cf. [ 1661, [ 1831, [ 1841). One reason for presenting 
this result is that a special case of it is closely related to 
algorithms invented in 1943-1947 by the astrophysicists 
Ambartsumian (USSR) [21 l] and Chandrasekhar (USA) 
[217], [220], to solve a class of Wiener-Hopf equations by 
reduction to nonlinear differential equations. This reduction 
was actually sought to obtain better numerical procedures, 
the same fundamental motivation underlying the work a 
decade later of Swerling, Stratonovich, and Kalman. 

We shall start with the general state-space model (19), 
(20), where now F,G,H,Q,Care assumed to be time invariant. 
Then it has been shown [183] that the linear least-squares 
estimate of z(s) can be computed via the equations 

2(t) = HA(t) (374 

i(t) = F$(t) + K(t)[y(t) - Hi(t)], R(t,) = 0 (37b) 

which are (cf. (22), (23)) as in the Kalman filter, except 
that now K(a) need not be computed via a Riccati-type 
equation (27), but through the equations 

R(t) = L(t)SL’(t)H’, K(t,) = l&H’ + GC 

(384 

i.(t) = [F - K(t)H]L(t), Wd = J5l WI 

where S and the initial condition matrix L, are found as 
follows. Let 

D A PI-I, + II,F’ + GQG’ 

- (I&H’ + GC)(l&H + CC)’ 

and suppose that 
rank of D = tl, CI I n. 

(39) 

(40) 
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Since D is symmetric, we can write it via a  standard numerical 
procedure (called the LDU decomposit ion, see e.g., [387]) 
as 

D = LJL,’ (41) 

where LO is an  n x c1 matrix and  S is the a  x a  “signature” 
matrix of D 

S = diag {l,l;..,l,-I,-l;..,-I} 

with as many ones as D has positive eigenvalues. For 
reasons that will be  given later, we shall say that the non- 
linear differential equat ions (38) are of Chandrasekhar-type. 
This new algorithm determines K(.) directly via the solution 
of n(p + LX) nonl inear differential equat ions for the n x p 
matrix K(.) and  the n x CI matrix L(e). In the Kalman 
filter solution we have n(n + I)/2 equat ions for the com- 
ponents of the matrix P(e), from which K( *) must then be  
found as P(*)H’ + GC. 

In this generality, there may not be  much to gain by 
choosing one algorithm or the other. However, there are 
important special cases where there is a  decided advantage. 
For example, if we are very certain about the value of the 
initial state x(t,), we m ight assume that II0 = 0, which 
can be  seen to lead to certain simplifications in D, in 
particular that S = Z  and c1 < m in (n,m). 

Another special case, of particular interest in communica- 
tions and in system identification, is obtained by assuming 
that the state and signal processes x( .) and  z(a) are in the 
statistical steady state, i.e., that they are stationary processes. 
To  achieve this requires that we assume F to have eigen- 
values with negative real parts and  the initial state variance 
to be  

II, = n, 0 = Fn + iiF’ + GQG’. 

Now the matrix D reduces to 

(42) 

D = -(nH’ + GC)(TjiH’ + .GC)’ and rank D 5 p. 

(43) 
Assuming for definiteness that the rank is p, the number  of 
outputs we can take S = -Z and L, = iiH’ + GC, so 
that no  special factorization is needed to specify the equa-  
tions, which now comprise 2np nonl inear equat ions 
compared to n(n + 1)/2 for the Kalman filter. There can be  
a  considerable computational saving when n >> p. 

If we assume not a  state-space mode l for the stationary 
signal process z(a), but only knowledge of the covariance 
function of z(a), we shall be  closer to the classical assump- 
tions of the pre-Kalman theory, and  will be  able to bring 
out some interesting connections. Thus if (cf. (32)) 

R,(t,s) = Z&t - s) + MeF”-“‘N’l(t - s) 

+ N’eF’(S-f)M’l(s - t) (44) 

then it can be  shown [183] that the algorithm is just (37) 
with (instead of (38)) 

k(t) = -L(t)I!(t)H’, K(t,) = N (45a) 

i(t) = [F - K(t)H]Y(t), L(t,) = N (45b) 

which should be  compared with the Riccati-type algorithm 
(35), (36) of the previous section. 

W e  can now point out a  close relationship to some famous 
equat ions obtained in astrophysics in connect ion with a  
W iener-Hopf equat ion (10) with K(t,s) of the form 

K(Q) = zc(Jt - sl) = 
s 

1  
exp (-It - sla)w(cl) da (46) 

0 

for a  certain weighting function w(a). Ir. 1947, Chandrasek- 
har [217] showed that the solution ;ould be  obtained in 
terms of two functions, now general ly known as Chand- 
rasekhar’s X and Y functions, obeying the simultaneous 
nonl inear differential equat ions 

am4 ~ = - Y(t,u) 
at s 

’ Y(t,LW(~) &’ (47) 
0 

aw4 
1 

~ = -aY(t,a) - X(t,or) 
at s 

Y(t>P>NB> dP (48) 
0 

X(O,u) = 1  = Y(O,a), O<a<l. (49) 
These equat ions attracted considerable attention and have 
been studied, especially in transport theory and related 
fields, by Case [232], Noble [252], W ing [256], and  Kalaba, 
Kagiwada, and  Bel lman (see [254] and  the many references 
in the survey volume [146]). In 1972, Casti, Kalaba, and  
Murthy [I611 used these results to show that the least- 
squares estimate 8(e) could be  written 

where 
s 

1 

s(t) = L(Wy(4 da (50) 
0 

; L(@) = -@JqW) + x(t,dCY(t) - %t)l, 

L(O,a) = 0, 0 5  u  5  1. (51) 

W ith some small effort, the reader should be  able to see 
that these equat ions are essentially the same as (37), (45a), 
(45b) if we make the assumptions 

W(~) =  ~  cli 6(a - cli), Ui 2  0, -F = diag (~1~; * .,a,}. 
1 

(52) 
This is why the nonl inear differential equat ions (38) are 
said to be  of Chandrasekhar type. W e  should note that the X 
and Y functions were already introduced by Ambartzumian 
in [211]. Chandrasekhar [217] first gave the differential 
forms, which Bellman, Kalaba, and  their col leagues began 
to numerically exploit in the early sixties. 

Discrete-Time Models 

Analogous results can be  obtained for discrete-time 
problems but the formulas are somewhat more complicated. 
This happened also with the Kalman formulas but the 
difference is even more pronounced here. Once again, 
we use the same estimator equat ion as in the Kalman filter 

Ri+l[i = @2ili-l + Ki[Ri”]-‘i?iy A,,-, = 0  (53a) 

Ei = yi - HRili-1 Wb) 
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but Ki is found not via the Riccati difference equation (30), 
but via the equations [184] 

Ki+l = Ki + ~Li[Ri']-lLi'H' (544 

Li+l = [~ - Ki+,[R~+,]-lH]Li Pb) 

Rf, I = Ri" + HL,[R;]-'L,'H' (554 

R;,, = Ri' - L,IH'[R,"]-'HLi (55b) 
where 

K, = OoH' + l-C, ROE = R + Hl-I,H' (56) 

and Lo, R,' are found by factoring the matrix 

D A N-I,@' + rQI-' - II, - K,[R,]-'K,' (57) 
as 

D = Lo [MO+ i-1 Lo', M, > 0, Me < 0. (58) 

The matrix Lo has dimension n x a, where a = rank of D. 
Then Lo is the initial value for (54b), while 

R,' = M+-' 0 
0 I Mm-' ' 

The form of (59) suggests that we define 

M, = CR;]-' 

in which case (55b) gives the equation 

Mi+l = Mi+ MiLi'H'[Ri"]-lHLiMi. (60) 
We could obtain other variations by updating [R,"]-1 

directly. The best choices seem to be those we have given; 
a count of the number of operations, which is more signif- 
icant in discrete time than the number of equations, shows 
that all forms of the new algorithm involve less computation 
than the Kalman filter. Recently, other variants have been 
found in which specific equations as in (54) or (60) are 
replaced by the specification of successive orthogonalizing 
transformations (e.g., of the Householder type) to be ap- 
plied to certain data arrays [ 193~1, [193d]. These forms are 
intimately related to square-root estimation algorithms (see 
Wal, C128a1, U481, and the references therein), and to the 
ideas of canonical spectral factorization (shades of Wiener, 
again). This last topic is further discussed at the end of 
Section IX. 

As in continuous time, in various special cases the 
algorithm can be simplified further, e.g., when II0 = 0 
or when II, = fi = an@’ + IQI’. In the latter case, 
the processes z and y are stationary, and it can be shown 
that the relevant equations are closely related to the work 
of Levinson in 1947 [218]. Curiously, the algorithm for the 
continuous-time stationary process case is also related to 
work done in 1947, namely that of Chandrasekhar [217]. 
While Chandrasekhar’s paper was in astrophysics and 
therefore somewhat inaccessible, it is unfortunate that 
Levinson’s paper, which was reprinted as an appendix in 
Wiener’s monograph [1], has been somewhat overlooked 
in the literature of communication and control theory, 
though it has been widely used by geophysicists [79], [96], 
[1 lo], and very recently in speech analysis [ 1641, [173]. 
Since they solve similar problems, there must clearly be a 

close connection between Chandrasekhar’s and Levinson’s 
results. Actually, both can be derived by using certain 
“invariance” principles, which consist basically of “in- 
variantly imbedding” the given problem in a family of 
similar problems. This will be explained in some detail in 
Section VII. 

We should also note that the techniques used to obtain 
(38)-(41) and (54)-(58) can also be applied [183], [184], 
to other problems where Riccati equations arise, even to 
general two-point boundary value problems whose solution 
is well known to be obtainable via a nonsymmetric Riccati 
equation. Furthermore, by using the ideas discussed at the 
end of Section IX, the results can also be extended to certain 
classes of time-variant and even nonlinear models. Applica- 
tions to infinite-dimensional (distributed parameter) prob- 
lems seem to hold special computational promise since 
operator Riccati equations on Hilbert x Hilbert spaces are 
replaced by equations on Hilbert x R" spaces. 

As stressed in [ 1841, [ 193d], a significant aspect of all the 
results of this section is that a reevaluation is timely of 
the almost total concentration on the Riccati equation in the 
sixties. The rest of this paper hopes to describe some of the 
concepts that will underlie such a reexamination. These 
concepts have actually been available for quite a while, but, 
as stated before, they seem to have been generally neglected, 
perhaps as historical curiosities. However, many of the 
results of Sections V and VI would probably not have been 
developed without awareness of the important role of the 
Wiener-Hopf equation and of spectral factorization in this 
field. Our survey of these various ideas can only be partial, 
but it is deliberately also somewhat tutorial so as to aid the 
interested reader in making a closer study of the many 
references that will be noted later. 

VII. SOME EARLY MATHEMATICAL WORK ON LINEAR 
LEAST-SQUARES ESTIMATION 

The adjectives in the title might seem strange to some- 
one who has gone through the previous sections; it might 
also seem a bit presumptuous considering how often the 
work of Wiener has been mentioned so far. Nevertheless, 
as stated by Masani [255] in the special Wiener issue of 
the Bulletin of the American Mathematical Society, the 
portion of Wiener’s work [l] that we have described does 
not have “the theoretical strength and completeness of that 
of Kolmogorov.” Wiener became aware of this himself 
when he tackled the multivariate and nonlinear least- 
squares problems. Masani writes that “Wiener adopted the 
[Kolmogorov] Hilbertian approach in his later papers 
under the stimulus of his younger collaborators.” 

Before embarking upon our examination of the more 
mathematical work of Kolmogorov and his successors, we 
should perhaps reassure the reader that the mathematical 
level of our presentation is not going to take a big jump. 
“Deeper” mathematics, or even “more abstract” math- 
ematics, does not necessarily entail more formidable 
mathematical “language.” It is quite possible to present 
the basic ideas of the deeper mathematics in a physical 
way, and in fact it is no longer a novelty that often the 
deeper mathematics is closer to physical constructs. The 
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Schwartz theory of general ized functions is a  good example, 
where the abstract topological notions of general ized 
equality and  convergence are more closely tied to the 
mechanisms of physical measurements than are the classical 
pointwise or Lp definitions. 

The Work of Wold (Z938) 

In 1938, just a  few years after Kolmogorov had put the 
theory of probability and  stochastic processes on  a  sound 
general  footing [203], W o ld presented a  Ph.D. dissertation 
on  discrete-time stationary processes. This dissertation, 
now available in book form [206], contains several interest- 
ing results, of which we mention only a  very few, related to 
our theme. For example, W o ld already used the idea 
proposed by Frechet in 1937 [205] of regarding random 
variables as elements of a  metric space with the distance 
between two elements being the variance of their difference. 
This geometric interpretation made  it natural to interpret 
least-squares estimation as projection onto a  subspace. It 
took many years for this natural idea to penetrate the 
engineering literature, where even in the sixties, strenuous 
efforts were made  in many papers to avoid using the so- 
called “orthogonality” condit ion for least-squares estimates. 
W e  may mention in passing that W o ld was inf luenced by the 
work of Frisch [202], where as W o ld states, “matrix 
calculus was for the first time  systematically emp loyed 
in statistics.” In 1969 Frisch received the first Nobel Prize 
in Economics. 

One  of W e ld’s ma jor observations was that it simplified 
calculations to replace a  sequence of correlated random 
variables by an  “equivalent” sequence of uncorrelated 
variables. He also noted that certain processes could be  
“singular” in that their future values could be  predicted 
exactly from knowledge of their past values. Such processes 
are nowadays, following Doob [213], called deterministic 
processes. These various ideas were combined into the 
following fundamental  result [206, p. 891. 

Let y(t) be a  finite-variance stationary discrete- 
time  process. Then there exist three jointly stationary 
processes MO,WW)~ 

0 y(t) = x(-l + +(*I; 
ii) $( *) and  x( *) are uncorrelated; 

iii) $(a) is deterministic and  unique; 
iv) s(a) has uncorrelated components,  E&(i)&(j) = 

dij; 

v) x(t) = b,&(t) + b+(t - 1) + b&t - 2) + * . .) 
wherexb’ c co. 

This decomposit ion is now called the Wold decomposit ion 
and it has been widely used and general ized, especially in 
functional analysis [245], [250], [261]. 

The Work of Kolmogorov (1939-1941) 

W h ile W o ld went on  in his thesis to apply his ideas to 
economic time  series, it was left to Kolmogorov to pick 
up  and complete W o ld’s results on  prediction, which he  
did in a  brilliant and  comprehensive fashion in the papers 
[207], [209], [210]. Later W iener made  similar, but less 

complete efforts, and  Masani  [255] comments that “so 
thorough had been Kolmogorov’s treatment of univariate 
prediction in the discrete case that there was little left to do.” 

Kolmogorov first noted that, though W o ld’s decom- 
position was stated as an  existence theorem, it becomes a  
prediction formula as soon as the deterministic process 
{$(a)} and  the coefficients {bi} of the moving-average 
process (so named by Kolmogorov {s(e)}) are fixed. Thus 
suppose we know that $(e) is identically zero. W o ld was 
aware, but did not explicitly state !n his theorem, that 
E(t) could be  uniquely determined by {y(t), y(t - 1); * .}. 
In fact, W o ld essentially constructed the E(.) sequence by 
successive Gram-Schmidt orthogonalization, for which 
this property is obvious. (We say “essentially” because 
W o ld was deal ing with an  infinite sequence {y(t), 
y(t - 1);. *} and  a  possibly nonzero deterministic $(a), 
so that a  careful double lim iting procedure had to be  used.) 
This property was explicitly introduced and exploited by 
Kolmogorov as follows. By W o ld’s theorem 

y(t) = hoe(t) f blE(t - 1) + b2e(t - 2) + . . * (60a) 

where the {s(t), s(t - 1), * * *} are uncorrelated random 
variables that can be  computed from {y(t), y(t - 1); * *} 
by linear operations. Also 

y(t + 1) = boE(t + 1) + [ble(t) + b2E(t - 1) + . . *I. 

However, as just noted, the terms in the square bracket 
are completely determined by knowledge of past y(.); 
moreover, these terms are not correlated with s(t + 1). 
Therefore, we have 

j(t + 1  1  t) I l inear least-squares estimate of 

y(t + 1) given {y(t), y(t - 1); . .1 

= b,&(t) + b2E(t - 1) + . * *. 

This solves the prediction problem. Here 

bo.z(t + 1) = y(t + 1) - $(t + 1  I t) 

so that one  may call s(t + 1) the “new information” or 
the “innovation” in the process y(.) at time  t + 1, and  
the process E(*) may be  called the innovations process of 
y(e), a  name that was apparently first used by W iener and 
Masani  in the m id-fifties (personal communicat ion in 
1968 from P. Masani). (See also a  1960 paper  by Cramer 
[268].) W e  shall see that such processes play a  fundamental  
role in our understanding of the process y(e) in both 
discrete and cont inuous time  (Sections VIII and  IX). 

So far we have chiefly an  easy application of W o ld’s 
theorem. Kolmogorov went on  to deepen W e ld’s theorem 
by relating it to properties of the so-called integrated power 
spectrum of the process y(s). W ith the covariance 

R(i - ,j) A Ey(i)y(j) 

W o ld had shown that there exists a  nondecreasing function 
F(1) called the integrated power spectrum of y( .) such that 

s 

112 
R(k) = exp (i2zkA) dF(A). 

-l/Z 
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In general F(a) will consist of an absolutely continuous 
part, a jump part, and a singular part (continuous and 
nondecreasing but with zero derivative almost everywhere). 
Kolmogorov showed that the deterministic part of a 
process y(e) is identically zero if and only if F(A) is ab- 
solutely continuous and its derivative 8’(A) satisfies 

s 

112 
In P(A) dl > -co. (61) 

-l/2 

He also gave explicit formulas for the coefficients {bi} in 
terms of the Fourier series coefficients of In fi(A)5 and 
finally showed that the one-step prediction error has a 
simple form 

lim  E[y(t) - E(t 1 t - l)]” = lim  E&‘(t) 
t-+03 t-02 

s 

11-2 
= exp 3 In p(A) dA. 

-l/2 

(62) 

This last formula, which is valid for all processes (even 
those with a nonzero deterministic part), is closely related 
to the Yovits--Jackson formula (17) mentioned in Section 
III (cf. [48], [54]). 

These remarkable results were obtained by connecting 
the study of stationary random processes with that of 
certain deterministic functions in the frequency domain. 
Kolmogorov did this via the relationship 

112 
Ey(k)y(l) = R(k - I) = 

s 
exp i2&(k - 1) dF(A). 

-l/2 

(63) 
It will be useful later to set 

z = exp i2nA 

so that (63) can also be written 

Ey(k)y(Z) = R(k - 1) = 
P 

zkz-’ dF(z) (64) z 

where the special symbol denotes integration around the 
unit circle. The left side of (63) can be regarded as an inner 
product between the random variables y(k) and y(Z) in a 
Hilbert space of random variables formed from finite 
linear combinations of the {y(k)} and their lim its in the 
covariance norm. Similarly, because F(A) is nondecreasing, 
the right side can be regarded as an inner product between 
exp i2nk3, and exp i2nlA in the space L,(dF) of functions 
square-integrable with respect to the measure dF(3,). 
Similarly the right side of (64) defines an inner product 
between the powers zk in the space of polynomials on the 
unit circle. Therefore, we have an obvious norm-preserving 
mapping (or isometry) between these spaces in which 

y(k) ++ exp i2nk,I c1 zk (65) 
n 

F a,y(k) c-) $ ak exp i2nkA c* i akzk. (66) 
1 

These A-functions can be extended from the interval (- +,+), 
or equivalently from the unit circle, into the complex 
plane, an idea of Hardy’s [199] that had been extensively 
studied by Paley and Wiener [204]. Nevertheless, it was 
Kolmogorov who exploited these ideas in general prediction. 

A Formula of Szegii’s (191.5) 

Kolmogorov’s explicit formula (62) for the mean-square 
error had already been discovered in a different, but 
isomorphic problem by G. Szegii in 1915 [20@], [201]. 
The isomorphism was precisely the one introduced by 
Kolmogorov, according to which the problem of choosing 
{aj} to m inimize 

II-1 2 

an2 P  E  Y(n) - 5 
[ 

ajY(j> 1 (67) 

is the same as that of choosing them to m inimize 
112 n-1 2 

Is2 - ” - 
s I 

exp (i2rcln) - C aj exp (i271;lj) #(A) 
-l/2 0 

((33) 
or 

(69) 

Thus the problem of m inimizing a,’ by suitable choice of 
the {ai} is just a problem of polynomial approximation on 
the unit circle. This problem was solved for absolutely 
continuous F(z) by SzegB, and rederived by Kolmogorov 
for general F(z). The connection to Szego’s work was noted 
by Krein [214] and later by Grenander [223]. 

The Work of Krein (1944-1945) 

In response to questions raised by Kolmogorov, Krein 
in 1944-1945 [214], [215], showed how Kolmogorov’s 
results could be extended to continuous time by use of a 
simple bilinear transformation. To each discrete-time 
stationary process with integrated spectrum F(;i) we can 
associate a stationary continuous-time process with integrated 
spectrum S(f), where 

WI = S(f), 1= Atan-‘f 
TL (70) 

1 + if exp i2nI. = - , tan nA = exp (271% - 1 ___-- 
1 - if exp (2&) + 1 

= if. 

(71) 
This transformation has the useful property of preserving 
causality, and therefore it is often used in digital signal 
processing (see, e.g., [367]). 

Use of the bilinear transformation shows easily [225, 
ch. XII] that the necessary and sufficient condition for no 
deterministic part is (compare (64)) 

f 
O” In ‘(f) df , _ Go 
--m 1 -?-f’ 

(72) 

5 Incidentally, this defines the so-called “cepstrum” of y( .), which The bilinear transformation can also be extended to multi- 
has had a vogue in signal processing recently [364]-[368]. variable systems [233] and to systems in state-space form 
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[163],‘j where it has been exploited to give a  new technique 
for solving the steady-state Riccati equation. The  bilinear 
transformation was also used in some generality by Masani  
and  Robertson [246], [35], [45], who paid particular 
attention to the question of how the discrete-time innova- 
tions process goes over to cont inuous time. W e  may note 
that the discrete-time one-step prediction error formula 
has no  continuous-t ime analog, but there is a  continuous- 
time  version of the W o ld decomposit ion and of the in- 
novations process s(e). These are important results, which 
we shall discuss further in the next section. 

Krein has made  several other important contributions to 
filtering theory. In 1954, he  discovered that the spectral 
analysis of a  weighted string, in which he  had been interested 
since 1940, enabled him to obtain [227] some deep results 
on  estimation given a  finite data segment.  Krein’s analysis 
also led him to several other results on  the solution of 
integral equations, the so-called “inverse-scattering” prob- 
lem (see, e.g., [224], [226]). Recently, Dym and McKean 
[259], [260] have pursued Krein’s ideas even further. 

The Work of Levinson (1947) 

In the USA, work on  least-squares estimation proceeded 
along different lines. W iener’s basic ideas, rather than his 
ingenious solution of the problem, inf luenced work on  
anti-aircraft devices, where the need to find computationally 
simple solutions led to some alternative approaches. Thus 
Phillips [212] began with the assumption that the opt imum 
filter has a  rational transfer function and used the mean-  
square-error criterion to solve for the coefficients. O thers, 
apparently including Blackman, Bode, and  Shannon [3], 
tried to incorporate the dynamical constraints on  the 
targets into the prediction schemes. 

Levinson [218] formulated the problem in discrete time. 
In his words, “A few months after W iener’s work appeared,  
the author, in order to facilitate computat ion procedure, 
worked out an  approximate, and  one m ight say, math- 
ematically trivial procedure.” Levinson’s deprecatory com- 
ments notwithstanding, this work has had an  important 
impact on  the field, both directly and  indirectly. His 
equat ions were rediscovered in 1960 by Durbin [239] 
in a  scheme for recursive fitting of autoregressive mode ls 
to scalar time-series data. W h ittle [81], [32] extended 
these recursions to mu ltivariate time  series, and  his work 
has been widely used by statisticians. Levinson’s work was 
directly used and extended to mu ltivariate series by workers 
in geophysics, especially Robinson, with various contribu- 
tions by groups in the Geology Department at M .I.T. and  
in the oil industry (cf. [I lo] and  the references therein). 
These algorithms are now being used in speech analysis 
(see, e.g., [164], [173]) d  an  in spectral estimation [107], 
[156], [182]. Th  ere are also close relations to the theory 
of orthogonal polynomials [208], [236], [241] and  to the 
algorithms of Section VI. These and other connect ions 

will be  briefly discussed after we present the basic problem 
and its solution. 

G iven a  segment of a  stationary time-series {y(O), 
y(l),* * *, y(N - l)}, where the {y(i)} are p-vectors, we 
wish to find the opt imum one-step prediction 

Let 

N-l 

$N[N-I & - c AN,,-iv(i). (73) 
i=O 

Ri-j B -@@y’(j) 
then by using the orthogonality property of least-squares 
estimates, we will have the equat ions 

N-l 

RN-j = - C AN,N-iRi-j, j = N - l;.*,O. (74) 
i=O 

The mean-square error is given by 
N-l 

RN~ & = E[YN - PNIN-JYN’ = Ro -I- c AN,,-8-N. 
0 

(75) 
Since RN” is a  nonincreasing function of N, its value can be  
used to decide whether it is necessary to collect more data 
(i.e., increase N) in order to achieve a  desired mean-square 
error. As stressed by Levinson, this makes it important to 
find a  way of successively calculating RN’, N = O,l, * * . . The  
first step is rearrange the filter equat ions (74) and  the error 
equat ion (75) in a  single block-Toeplitz matrix equat ion 

&N 

(76) 
where gN is a  block-Toeplitz matrix. The  unknowns are 
the {AN,i} and RN”. The aim is to determine Rh,, and 
{A N+ l,i} in a  way that takes maximum advantage of the 
previous computat ions made  to find RNE and {AN,i}. It 
takes almost as long to describe the result as it does to give 
a  derivation, following Robinson [110, ch. 61. W e  shall 
therefore do  so here, partly also with the hope that readers 
may recognize analogies with similar procedures in other 
problems. 

The  method is first to try an  “obvious” solution, pushing 
our luck the most by assuming that adding a  zero to the 
previous solution may work. It will if in the resulting 
equat ion 

[ZJN,,,* * *,AN,N,~]~N+I = [RNE,O; . .A~N] (77) 
the term c(~ = RN+1 + Cy-’ AN,iRN-i is zero. If this does 
not happen,  we have to find a  (simple) way of forcing MN 
to zero. For this we introduce the “auxiliary” (adjoint or 
reversed) equat ions 

[WN,N, * . . ,BN,~J]~N+ 1 = [PN,O, * * . ,O~N'] (78) 
where at stage N we assume that we know {AN,i,RN’,UN) 

6 See also Popov [87], [87a], papers that contain several important 
ideas on  spectral factorization and  innovations representat ions (see and {BN,i,RNr,QN}. [For N = 1, we take B,,, = Z, R,’ = 
especial ly [87, sects. 5, 7, and  appendix  E, F). R. = ROE.] Next we form a  weighted combination of (77), 
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(781 where z is an indeterminate and similarly define BN(z), 
\ I 

[&AN,~ + KN'BN,N,' "9KNa]~N+1 
AN+~(z), BN+ t(Z). Th en the recursions (81)-(83) can be 
written compactly as 

= [RN’ + KNaPN,O,* * * ,O,CIN + KN’RN’] 

from which it is easy to see that choosing 

KN’ = -NN[RN’]-~ 

gives us a solution of the extended equation, i.e., 
(79) 

[Z,A N+l,l>” ‘,A N+l,N+l 1 
= [Z,A,,,; . *,AN,N,O] + Kzv~[O,BN,N,* . *,BN,tJ]. (80) 

Similarly with the help of 

KNp = -pN[RN’]-l 

we can update the {BN,i} as 

[BN+~,N+~,...,BN+~,~,ZI 

= [VN,N, * * * ,BNJ,~] + K,$[&‘&,* ’ ‘,A,,,,O]. (81) 

These relations were independently discovered by Whittle 
[81] and Wiggins and Robinson [96]. However, the latter 
had the benefit of an observation of Burg that 

UN = f iNI* 

The recursions for RNE and RN* can be seen to be 

G+t = RN' - ~N[RN', - ’ PN (83) 

R;v+t = RNr - PN[RN’]-laN. (84) 

Some Connections and Extensions 
We should point out that the method of using a partial 

solution and a subsequent correction using a “reversed- 
time” auxiliary solution is the same in spirit as the method 
of invariance introduced into astrophysics by Ambartsumian 
[211] and Chandrasekhar [217]. This is a powerful idea, 
whose main thrust can be recognized in many problems- 
e.g., in the method of adjoints (or influence functions) in 
optimization problems [128] or in the Berlekamp-Massey 
decoding algorithm for BCH codes [289], [354], to mention 
only a few problems that may be of interest to readers of 
this article (see also [191]). 

Here we note the obvious similarity between (54) (55) 
and (83) (84). In [185] we have given a stochastic interpre- 
tation of the previous algorithm, in which the Burg identity 
(82) arises very naturally. These ideas are then extended to 
a general study of decompositions of a time-series (into 
conditional innovations and residuals) that yield a certain 
statistical shift-invariance property. This property, anal- 
ogous in many ways to the natural shift-invariance of 
stationary processes, enables “imbedding” derivations of 
the discrete-time algorithms (53)-(60) of Section VI and of 
certain so-called “Fast-Cholesky” algorithms for triangu- 
larizing nonnegative-definite block-Toeplitz and certain 
related matrices [191], [193]. 

Orthogonal Polynomials 
It is natural to describe the relations (80)-(83) in poly- 

nomial language. Let 

AN(Z) = AN,N + +-. + AN,l~N-l + z N (85) 

which turn out to be exactly the recurrence formulas for 
orthogonal polynomials on the unit circle [236], [241]. 
These are polynomials {AN(z), IzI = l} such that 

<Ai(z),Aj(z)) 6 (87) 

= 6ijRi @3) 

where F( .) is the matrix integrated power spectrum (cf. 
(63)) defined by 

t6 

dF(z) ziz-J - = a covariance function, Ri-j. (89) 
z 

A striking thing about these polynomials is that, unlike 
the classical orthogonal polynomials on the line, to get a nice 
recursion one has to introduce “auxiliary” polynomials 
{Bi(z)) and define a simultaneous recursion for the {Ai( 
and the {Bi(Z)}. 

This fact was first noticed by Szego [200] who considered 
the scalar case in which the previous relations simplify 
because the Toeplitz matrix gN will be symmetric rather 
than just block-symmetric. Now it can be seen that 

BN(z) = z~AN(z-') = ZN + AN,NzNml + * ** + AN.1 

= the “reverse” of the polynomial AN(Z). (90) 

In 1961, Baxter [240] extended Szegli’s formulas to scalar 
nonsymmetric Toeplitz matrices, of which the symmetric 
block matrix form is a special case. In related work, Baxter 
[2421, W I, D evinatz [249], Ibragimov [251], and others 
have studied the asymptotic behavior of the error in 
Wiener filtering for quite general classes of stationary 
processes. These general techniques can also be usefully 
adapted to Kalman filters. 

To close this section, we shall point out a connection with 
innovations that can be useful in generalizing several of the 
previous results to certain classes of nonstationary processes. 
For this we recall the isometric mapping (64)-(66) between 
the space of random variables and the space of polynomials 
on the unit circle under which y(k) +-+ zk. Now, given 
{YmY(o?* * *I, t i is natural, following Wold [206], to 
consider the orthogonalized innovations sequence, say, 

E(O) = y(o) = 1. y(o) 

41) = ~(1) - 9U IO) = ~(0) + At,t~(o). 

By our mapping each of the innovations E(N) corresponds 
to a polynomial AN(z) = Z + AN,Nz + . * * + AN,lzN, and 
these polynomials must be orthogonal. In other words, 
Szegb’s orthogonal polynomials are the images of the 
innovations under the isometric mappings (65), (66). Many 
properties of orthogonal polynomials can be interpreted 
as properties of innovations and vice versa. For example, 
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&ego’s classic result that the polynomials AN(z) have all 
their roots inside the unit circle, so that AN-l(z) can be  
regarded as the transfer function of a  bounded filter, is 
the analog of the fact that the transformation between a  
discrete-time process y(s) and  its innovations is boundedly 
reversible. 

So far, we have only’noted connect ions with known 
results. On  the other hand, innovations can be  defined 
for large classes of processes besides stationary discrete- 
time  sequences. Therefore, we have the possibility of 
obtaining various generalizations of the previous results 
and  in particular of the classical theory of orthogonal 
polynomials. (See also [248a].) 

These possibilities provide additional motivation for 
going on  to a  deeper  study of innovations and the W o ld 
representation. 

VIII. CANONICAL REPRESENTATIONS OF CONTINUOUS-TIME 
PROCESSES 

The concept of innovations processes was introduced for 
stationary discrete-time processes via the W o ld representa- 
tion theorem. The  continuous-t ime decomposit ion, which 
was obtained by different methods by Krein [215], Kar- 
hunen [222], and  Hanner [221], is a  natural generalization 
of the discrete-time representation. It contains a  regular 
part plus a  deterministic part, which will be  absent if and  
only if condit ion (72) is met, as we shall henceforth assume 
for convenience of writing. Then  the W o ld representation is 

s 

t 
Y(t) = s(t - u> dE(u) (91) 

-Co 

uncorrelated increments E(e) and  the notion of W iener 
stochastic integrals. [The situation is analogous to that in 
deterministic system theory, where we can use Heaviside 
functions and Stieltjes integrals to handle singularities that 
are at worst delta functions.] Even when the second ap- 
proach is taken, the concept of white noise is still very 
convenient and  useful, as engineers have long known. 
A thought-provoking example is provided by the develop- 
ment of general  series expansions for random processes, 
which were known to engineers much before they were 
formally discovered by mathematicians (cf. Section X). 

However, as the mathematical sophistication of the field 
increases, there is a  tendency to uncritically reject the use of 
white noise. This I bel ieve is a  serious m istake, which 
delays for many potential users the appreciation of several 
general  and  useful results that may have been originally 
derived in a  more abstract context. Moreover, at the very 
least it can be  a  powerful guide to our intuition and a  hedge 
against many unfruitful investigations. It may be  apt to 
note that, according to Doob [253a], it was W iener who first 
“showed, and  appl ied repeatedly, that the [process E(s)] 
acts as though [its] derivative process exists, is stationary 
and has a  constant spectral density.” Doob’s book [225, 
pp. 435-436, p. 533, pp. 546-5471 has some nice examples 
of how white noise can be  usefully emp loyed even in a  
r igorous exposit ion of stochastic processes addressed to 
mathematicians. A recent book of Hida [295] stresses the 
importance of white noise and this has been further rein- 
forced by recent work of Hida and of McKean [323]. 
Rao has developed perhaps the most general  results to date 
[3!5], studying more white noise processes than those 
defined as the derivatives of processes with independent 

where E(e) is a  process with uncorrelated increments, and  increments [225]. 
the integral is the so-called W iener stochastic integral, cf. 
Doob [225, ch. IX]. There are many kernels g(a) that can Properties of Canonical Kernels 

be used in the previous representation, as we shall see later, Karhunen and others have studied the kernels g( *) and  
but there is always a  particular one  go(*) such that y(a) go(.) in some detail. Karhunen [222] showed that all g( *) 
and  E(a) are causally equivalent in the sense that any that could serve to define the W o ld representation (91) 
finite-variance random variable linearly dependent  on  are of the form 
{E(u), u I t} can also be  calculated by linear operat ions 
on  {y(s), s I t} and vice versa. In this case, we shall say g(t) = 
that the W o ld representation is canonical, or that s 

exp (iwt)G(w) 2 

s 

t G(o) = lim  G(s), s=o+io 
Y(t) = go(t - u> dE(u) (92) 0-O 

-02 
G(s) = A(s (93) 

is an  innovations representation of y(a), and  we shall call where 
E( *) the innovations process of y( *). This can be  rewritten 
in a  form closer to W e ld’s (cf. [60a]) 1 rt 

y(t) = 
J 

go0 - M4  du, e(u) = dE(u)/du. 
-cc P(J) = the power spectral density of the process y(.) (94) 

However, e(.) is now a  cont inuous time  “white noise” and 
process, so that the differentiation of E(s) is not valid in a  
classical sense, but only in the sense of general ized functions. A(s) = transfer function of an  “all-pass” system. 
However, as long as one is at most concerned with a  white 
noise process (and not any of its general ized derivatives), Any such all-pass transfer function can be  further de- 

there is no  need to introduce the machinery of general ized composed into 

processes; it suffices to work with the integrated process of 4) = ~o~,(sM,(s)~,(s) (95) 
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where 

A, = constant of magnitude 1 (called a trivial all-pass 
function) 

(Blaschke product) 

Re Sk > 0, 2 Re Sk/l -!- IskI < 00 (96) 
A,(s) = eeas (pure delay) (97) 

As(s) = exp - J 
[ s O” &$ @O] (singular part) 

n -03 
(98) 

where p(a) is a nondecreasing function whose derivative 
vanishes almost everywhere, and 0 < p(co) - p( - co) < co. 
The {Ai} all have unit modulus along the io axis, so that 

IG(ico)l = /Go(i 

Also, for all but A, we have 
(99) 

IAi( < 1, Re s > 0, i = 1,2,3. (100) 

If we restrict G(s) to being rational, then A,(s) and A3(.s) 
will not appear and the so-called Blaschke product in 
A,(s) will be finite (k < co). Note that all the poles of 
A,(s) must be in the left half-plane (corresponding to 
causality, since the region of definition of all our functions 
here includes the iw-axis), though there can be zeros in the 
right half-plane. These results were obtained by using 
classical results on bilateral Laplace transforms (cf. Paley 
and Wiener [204]) and the so-called Hardy functions (see 
Hoffman [244] and Duren [258] for recent accounts). 
It may be of interest that the decomposition for G(s) was 
obtained before Karhunen and Krein by Krylov [262] 
in a purely mathematical study of the transforms of “one- 
sided” (causal) time functions. Such results have again 
become of interest in recent studies on infinite-dimensional 
realization theory [307]. 

Karhunen proved that 

G(s) = AoGoW (101) 
is a necessary and sufficient condition for 

MY; t> = ME; t), --co<t~co (102) 
where 
L,(y; t) = the linear space of all finite linear combinations 

of {y(s), s 5 t}, and their limits in the cov- 
ariance norm. (103) 

For all other G(s), we have 

MY; t> E ME; 0, -co<tIcc. 

This explains the names canonical representation and 
innovations representation for (92). We note that G,(s) 
and .4(s) are sometimes, following Beurling [264], [312], 
called “outer” and “inner” functions, respectively. 

There are various other interesting properties of the 
canonical kernel go(*), some of which would seem to be 
useful in developing adaptive filters [38], [173], [55]. 

1) Letf(*) be a square-integrable function on (- co,oo). 
Then 

s 

t 
go(t - ulf(u> dzJ = 0, t I 0, 

--m 
if and only if f(t) = 0, t I 0. (104) 

This property was discovered by Karhunen [222]. 
2) The canonical kernel has maximum partial energy 

in the sense that 

s 

t 
t g&d) du 2 

s 
s2(4 & all t > 0 (105) 

and all ciusal or noncauial g(*) with IG(iw)l = IGo(io)l. 
This property was given in 1962 by Robinson [271], 
though closely related results were also noted by Levy 
in the mid-fifties (see, e.g., [266, p. 1401). See also [317]. 

3) The set {gO(t - r), r 2 0} spans L,(O,co). This last 
result is due to Beurling .[264] and provides a version for 
L, of a famous theorem of Wiener’s that the Banach space 
L, can be spanned by the translates of a function with 
positive Fourier transform. 

4) Let G(s) be rational and let 
G(b) = IG(iw)l’exp $(io). (106) 

Then C#J( a) is called the phase Zag of the filter G(a) and 
-d~#~(io)/dw is called the group delay. Of all filters with the 
same “gain” jG(io>)l, Go(.) has the smallest phase lag and 
group delay. This is often labeled the minimum-phase 
property of go(*) (see [263]). 

Applications to Prediction 
It should be clear (as noted by Krein and Karhunen) 

that the innovations representation (92) can be used to 
solve the prediction problem just as in the discrete-time 
case. In fact we have 

s 

t 
A(t + CY 1 t) = go(t - u> dE(u), CI > 0. (107) 

-CO 
Of course, the difficult thing is to explicitly calculate 

(E(u), u I t} from {x(u), u 5’ t}. For rational G,(e) the 
solution is simple: just pass x(e) through the filter with 
transfer function [G,(s)]-‘. (In principle, this is what we 
do in general, but care has to be taken in defining the inverse 
transfer function.) Thus we now have an alternative basically 
probabilistic approach to the continuous-time prediction 
problem, without bringing in any Wiener-Hopf equations. 

These ideas were rediscovered by Bode and Shannon [5], 
and Zadeh and Ragazzini [6], though not in as much 
mathematical generality (only for rational spectra). These 
authors recognized very clearly that what was involved in 
the innovations approach was 1) replacing, causally and 
without loss of information, the given process by a “simpler” 
process, and 2) solving the estimation problem for the 
simpler process. So far we have used white noise as a 
simpler process, but it is not necessarily the only such 
process. For example, Zadeh and Ragazzini [6] show how 
we may use a process with spectral density equal to the 
numerator of the spectral density of the original process. 
This idea was rediscovered for discrete-time autoregressive- 
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moving average processes by Rissanen and Barbosa [131] 
(see also W h ittle [32]) and  has been exploited in several 
recent papers [175], [192], [184]. In principle, there are 
many other possibilities as well, and  studies of “general ized 
innovations processes” have been made  by Kailath and 
Duttweiler [311], Kall ianpur and Oodaira [321], and  
Rozanov [314], [325]. 

Nonstationary Processes 

The cited work up  to 1950 was all for stationary processes 
and used frequency-domain methods. In 1950 Hanner [221] 
gave a  purely time-domain derivation of the continuous- 
time  W o ld decomposit ion, and  this raised the possibility 
of extensions to nonstationary processes. The  first results 
in this direction were perhaps those of Yaglom and Pinsker 
[265], who studied nonstationary processes that had  station- 
ary increments of order II. The  simplest example is the 
W iener process, which has stationary increments of first 
order, and  can be  represented as the integral of white 
noise. The  general  case was first studied by Levy [260], 
[274], who sought representations of the form 

f y(t) = 
s 

g(w) dE(u), 0 5 t I T  < co. (108) 
0 

When 
L,(y; t) = L,(E; t) (109) 

he  called the representations proper canonical, using the 
word canonical for the case L,(y; t) c L,(E; t). This 
terminology has now been abandoned.  The  covariance of a  
process as in (108) is 

s 

tlis 
R(t,s) = s(t,u>s(w) du, tAs = m in (t,s). (110) 

0 

Now Levy asked whether, given a  covariance R(t,s), one 
could find a  suitable function g(t,u). He did not obtain a  
general  solution to this problem, but among other results, 
he  did obtain the following useful one. 

Let 
t s 

R(t,s) = tAs + 
ss 

K(u,v) du dv, 0 I t,s I T  
0 0 

(llla) 

’ = 
ss 

’ [6(u - v) + K(u,v)] du dv (lllb) 
0  0  

where K(*, *) is a  cont inuous symmetric function of two 
variables. Assume that the eigenvalues of K(* , a) on the 
square [O,T] x [O,T] are greater than - 1, or equivalently 
that R(. , *) is strictly positive definite on  this square. Next 
determine a  function h(*, *) as the unique solution of the 
W iener-Hopf type of equat ion 

t 
h(t,s) + 

s 
h(t,u)K(u,s) du = K(t,s), Ols<t<T. 

0 
(112) 

Let k(* , *) be  the so-called resolvent function of h(- , .), 
defined by the equat ion 

h(t,s) - k(t,s) = 
s 

’ k(t,u)h(u,s) du. (113) 
0 

Then the innovations representation is 

y(t) = j=; [I + jUt k(w) dz] dE(u). (114) 

This is a  useful result, though it is a  bit difficult to see the 
rationale for the steps (see some following comments by 
Hida). W e  shall give an  explanation in Section IX. 

Although Levy [266] noted that his method appl ied to 
certain more general  kernels, e.g., those that were an  a-fold 
double integral of [d(t - s) + K(t,s)] (cf. (111)) with a  
not necessari ly integral, he  was unable to prove that (110) 
always has a  solution, or, equivalently, that an  innovations 
representation always exists for a  (nondeterministic) 
process. The  reason for this failure appeared only a  few 
years later, when in 1960 Cramer [268] and  Hida [269] 
independently discovered a  new dimension to this problem, 
finding that a  single kernel g( *, a) does not suffice in general. 
The  proper W o ld decomposit ion for a  finite-variance 
nonstationary process is 

Y(t) = 5  1’ gi(t,u) dEi(u) + $(t> 
1  0  

(115) 

where $( *) is a  deterministic process, and  the {Ei(.)} are 
orthogonal- increment processes, uncorrelated with each 
other. The  number  N is uniquely determined by the covari- 
ante of y(e), though the {gi} and  {E,(e)} are not. N is 
called the multiplicity of the process y(a), and  if N > 1  
the representation (115) is called a  general ized canonical 

‘representation. The  mu ltiplicity N can be  infinite [273], 
even though all presently known examples of processes 
with N > 1  have rather pathological kernel functions 
{gi(t,u)}. Hitsuda has very recently discovered [320] that 
a  process of the form 

w1(t) + f(t)W2(0, t20 (116) 

where wi(*) and  w2(*) are independent W iener processes, 
will have mu ltiplicity 1  iff( *) is absolutely cont inuous with 
a  square-integrable derivative. However, if the derivative 
is not square-integrable on  every open interval (I,m) c 
[O,oo), then the mu ltiplicity is 2. The  mu ltiplicity is also 2  
if f( *) has unbounded variation everywhere. 

Hida (2691 developed some of Levy’s ideas more clearly 
and  obtained several new results. In his words “[Levy’s] 
pioneering works contain some points difficult for us to 
follow. The  ma in aim of this paper  is to establish his theory 
systematically and  to prove some new facts.” Among other 
things, Hida proved in great generality that if a  process 
has a  representation of the form (log), then it always has a  
canonical ( innovations) representation obeying (109). He 
also gave the following extension of the criterion (104) 
of Karhunen: the representation (108) is an  innovations 
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representation if and only if 

s 

t 
g(t,ulf(u) du = 0, for every t I T (117a) 

0 

implies 
f(u) = 0, a.e. on [O,T]. (117b) 

These results are for processes of multiplicity one and are 
difficult to extend to the general case (115), because of the 
nonuniqueness of the {gi} and {Ei}. 

Processes of Multiplicity One 

It is useful to identify processes whose multiplicity is 1, 
since statistical applications will be easier in this case. 

As noted earlier, the results of Krein, Karhunen, and 
Hanner show that nondeterministic stationary processes 
have multiplicity one. Cramer [268], [273], following the 
ideas of Hanner, obtained several interesting results. For 
example, he showed that nondeterministic discrete-time 
processes, stationary or not, always have multiplicity one, 
which is in sharp contrast to what we have just noted for 
continuous-time nonstationary processes. This result shows 
that some care must be exercised in studying continuous- 
time problems via discretization. Some studies of this 
question have recently been made [318]. Some other 
special examples of processes of multiplicity one (e.g., 
wide-sense Markov processes and certain harmonizable 
processes) have been given by Cramer [275], [300], who 
was apparently unaware of the class of processes identified 
by Levy [cf. (ill)]. 

In the engineering literature, the great appeal of the 
innovations approach as described by Bode and Shannon 
and by Zadeh and Ragazzini led to various attempts to 
discover innovations representations for nonstationary pro- 
cesses. A survey of the results achieved up to 1961 is given 
in a paper by Zadeh [270] and a further review was given 
by Stear [94] in 1965. However, the results achieved until 
then did not seem particularly exciting. In 1966, Anderson 
[98] extended some of Stear’s work to show that a canonical 
representation for covariances of the separable form (27) 
could be obtained if a certain Riccati equation could be 
solved. This was nice because such equations were familiar 
from the Kalman filter. However, the Riccati equation 
developed by Anderson was of a different form from that 
used in the Kalman theory, and therefore the nontrivial 
question of existence of a solution to this nonlinear equation 
had to be settled differently [122], 1271. Related results 
were obtained by Brandenburg and chl eadows [134] and 
Geesey [281]. 

However, the work in [98], [134], [122], [127], pro- 
ceeded in apparent ignorance of the fundamental results of 
Hida and Cramer. It is perhaps noteworthy that even 
Levy’s result, though it was described in Zadeh’s 1961 
survey paper, escaped attention until it was rediscovered 
in a different way by the present author in 1968. This will 
be described in the next section, where we shall show that 
the Levy result and the occurrence of the Riccati equation 
in [98], [134], can be easily explained by means of some 
estimation results. 

IX. RECENT RESULTS ON INNOVATIONS PROCESSES AND 
SOME APPLICATIONS 

The innovations process was derived in discrete time by 
use of the Gram-Schmidt technique, according to which 
vectors are successively orthogonalized. by projecting each 
new vector on the manifold spanned by the previous vectors. 
For a random sequence {(yi)> this means forming 

The analogous procedure for a continuous-time process is 
to form 

40 = v(t) - $0 I t-1 
but this will be identically zero for any process with con- 
tinuous paths. However, if 

Y(f) = z(t) + 4th O<t<T 
and 

s 

T 
E Iz(t)l dt < 00 (118) 

0 

then we will have a nontrivial innovations process 

E(t) = y(t) - j(t I t-) = y(t) - s(t). (119) 

Notice that (118), (119) is the time-domain analog of the 
Wiener filter formula (16). The process E(V) has already 
been encountered in the Kalman filter (cf. (24)), and in that 
context it was recognized by a number of people ([109], 
[ 1111, [ 1141) that E(*) is a white noise process with 

E&(t)&‘(s) = Ev(t)v’(s) = Z&t - s). W) 

However, the proofs of (120) in all these references were 
based on knowledge of the Kalman formulas for 12(e) 
and the mean-square error P(e). It was apparently not 
suspected that (120) holds quite generally; in fact my 
belief in this was the object of much skepticism at first. 
However, in April 1967, I obtained a proof initially via the 
Wiener-Hopf equation (IO), and then by a simple use of 
the fundamental property that z(t) - 2(t) I {y(z), z < t}. 
This proof is described in [ 116, appendix I] (see also [298] 
and [291]). Thus we now had the opportunity to use the 
innovations method for nonstationary continuous-time 
processes. 

During 1966-1967, the author, his students, Duncan and 
Frost, and Clark were studying nonlinear filtering. In that 
context it had become clear by a theorem of Levy’s (Doob 
[225, p. 3841) that if (120) could be established, one could 
obtain the striking fact that if v(e) were Gaussian (but not 
necessarily z(e)), and if ;( .) was the least-squares estimate 
(not necessarily linear) then s(e) would be not only white, 
but also Gaussian ! This general result thus followed from 
our proof in April 1967; Frost simultaneously established 
it [279] in a different way using the Ita differential rule. 
Shiryaev later informed the author that he had found a 
similar result in 1966 [lOl, p. 221 in trying to make the 
evolution equations for nonlinear filtering mathematically 
meaningful. Namely, one had stochastic integrals with 
respect to the process s(e) and these would not make sense 
unless E(S) was a martingale process. The same reason led 
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to an  independent discovery by Kall ianpur (personal 
communication, 1969). By now, several proofs of (119), 
(120) have been given under  increasingly general  assump- 
tions, with the most recent results being in Kailath [304] 
and  Meyer [324]. Specific extensions to discontinuous 
processes with independent increments have been made  by 
Frost [294], [302], Snyder [172], Bremaud [308], and  in 
some generality by Segall [326]. By how, the role of mart- 
ingale theory in this question has become much clearer, 
e.g., the innovations theorem is just the Meyer-Doob 
decomposit ion for semimartingales with respect to the 
sigma fields of the observation process [326]. However, 
this is not the place for an  exposit ion of this topic. 

The  first application of the previous result was to deduce 
a  general  formula for the likelihood ratio in terms of the 
nonl inear estimate S(a) (cf. [291], [297]). Such formulas 
had been obtained by Schweppe [93] for Gaussian z(a) 
and, independently and  in more generality, name ly, for 
Markov z(e) by Stratonovich and Sosulin in a  series of 
papers beginning in 1964 ([SS], [102], [141]). However, 
the arguments of these papers were rather cumbersome 
and, at the author’s suggest ion and with his help, Duncan 
succeeded in streamlining and clarifying Stratonovich’s 
proof (cf. [lOS], [115]). 

A popular method for attacking such detection problems 
(and related nonl inear estimation problems) is via the use 
of a  general ized Bayes’ rule; the likelihood ratio is first 
written for a  fixed sample of the signal process, and  then one 
averages over all possible signal paths. (The function-space 
version of this familiar technique was first introduced into 
the engineering literature by Bucy [91], and  it is sometimes 
called Bucy’s representation theorem. Bucy has given proofs 
under  various condit ions (cf. [ 1311, [136]), apparently 
unaware that the most general  form appeared in a  1968 
paper  by Kall ianpur and Striebel [ 1181.) This was essentially 
the method used by Stratonovich and Sosulin and  then 
clarified and extended by Duncan [108], [115], [293]. 
However, it has a  serious lim itation. If the signal process 
can depend upon past observations of signal plus noise, 
as happens in feedback communicat ion and control prob- 
lems, then clearly the condit ioning-and-averaging procedure 
of the general ized Bayes’ rule cannot be  followed, because 
fixing the signal may also fix the observation. It seems that 
the only way to overcome this difficulty is to use the in- 
novations process. This is done for additive Gaussian 
noise in [296], [297], with a  heavy use of martingale theory. 
It may be  of interest that the general  l ikelihood ratio 
formula was conjectured in May 1967, some time  before 
much of the machinery for a  r igorous proof was made  
available through a  now famous paper  of Kunita and 
W a tanabe [278], publ ished in late 1967, and  a  related 
December 1968 paper  [282] of Hitsuda. 

Applications of the innovations process to linear problems 
actually came after the application to nonl inear detection 
problems and were partly stimulated by the paper  of 
Schweppe [93], just cited. Let 

s 

T 
qt 1 T) = ff(t,s)y(s) ds 

0 

and 

2(t) = 
s 

’ h(t,Ms) ds (121) 
0 

and assume that the signal z( .) and  the noise v(e) are 
completely uncorrelated. Then from Schweppe’s paper  one 
can deduce that 

s 

T 

zz(t,s) = k(t,s) + k(s,t) - h(z,t)h(z,s) dz. (122) 
0 

It turned out that this relation could be  proved directly 
by using an  integral equat ion identity of Siegert, Krein, 
and  Bel lman [SS], [228], [231]. A proof via innovations 
was desired, but for this it was necessary to show that the 
process E(*) spans the same space as the observation 
process y(.). The  author succeeded in doing this in Novem- 
ber 1967 by the following argument [ 1161, [165]. 

W e  can write the relation 

E(t) = y(t) - 2?(t) = y(t) - 
s 

t 
h(wYw dz (123) 

0 
symbolically as 

E = (I - k)y. (124) 

Now we can find y from E if (I - k)-’ exists, a  sufficient 
condit ion for which is (Smithies [386]) that k be Volterra 
and square-integrable on  [O,T] x [O,r]. Causality is 
equivalent to the Volterra property for such functions 
(but not necessari ly otherwise (cf. [311]), and  it is easy to 
see that the square-integrabil ity will follow from the 
assumption that z(a) has finite expected energy 

s 

T  
E z’(t) dt < co. (125) 

0 

Therefore in the linear case, we know that under  quite 
general  circumstances E(*) is a  true innovations process: 
for every t, {(E(Z), z < t)} spans the same linear space of 
random variables as {(y(z), z < t)}. W ith this fact, the 
Kalman filter can be  readily derived [ 1161, [ 1651, and  
several related linear problems solved [ 1171, [lSl]. Un- 
fortunately, the analogous result for the nonl inear problem 
has still not been proved, except for uniformly bounded 
z(a) [283] (see also [301, appendix I]). However Fujisaki, 
et al. [309] have elegantly circumvented this lack, by 
proving that z^(*) can still be  written as a  stochastic integral 
with respect to the innovations process, after which the 
remaining calculations are straightforward. Nevertheless, a  
proof of the equivalence would still have various benefits, 
since it can also be  regarded as a  very general  existence 
result for solutions of functional stochastic equations. 
Moreover, there is a  feeling, not unshared by the author, 
that the term “innovations process” should only be  used 
for E(.) when it can be  proved to contain the same informa- 
tion as the original observation process, i.e., whenever 
{y(s), s < t} and {E(S), s < t} generate the same sigma 
fields. Nevertheless, many important results, e.g., those on  
signal detection [297] and  on  nonl inear filtering [309] 



166 IEEE TRANSACTIONS ON INFORMATION THEORY, MARCH 1974 

can be proved without using this property. Therefore, the 
process e(e) certainly deserves a special name, and we 
use innovations in the hope that the equivalence question 
will be settled (sooner or later) in some generality for non- 
Gaussian z( *). The term “residual” might be used, but this 
term is already used in statistics to denote (in discrete-time) 
the process ri = yi - H~ili, while the innovations process 
is Ei = yi - H~ili-1. 

The name innovations was apparently first used for the 
discrete-time sequence {v, - 9i,l- ,} by Wiener, Masani, 
and Kallianpur in their studies in the mid-fifties (personal 
communication from Masani). Some studies of its properties 
were made in the unpublished report [267], which is 
partially elaborated in Masani’s survey [255, pp. 92-931. 
Masani [255] and Lo&e [248, p. 3861 have pointed out 
that LCvy used the centered sequence {ui - $ili-l} for 
various problems, beginning in the mid thirties. As noted 
earlier, Wold was the first to use it for linear estimation. 
Wiener and Kallianpur attempted to establish conditions 
for non-Gaussian {yi} under which the sigma field of the 
innovations would be causally equivalent to the observa- 
tions. Masani [255] mentions this as one important problem 
“bequeathed to posterity” by Wiener. He continues “Also 
left to us is the extension of this theory to the continuous- 
parameter case. Here the absence of an atomic time-unit 
makes the problem of defining nonlinear innovations 
extremely hard; obviously all we may expect are virtual 
or differential innovations”. As noted earlier [304], [324], 
[326], martingale theory shows how to do this for semi- 
martingales (processes of bounded variation plus a mart- 
ingale, e.g., a Wiener or centered Poisson process). 

require K( a, *) to be continuous, only that K(t,t) be in- 
tegrable. Then in May 1968, we happened to discover a 
book by Gohberg and Krein [280] that showed that the 
square-integrability of K( a, *) was sufficient. Later Hitsuda 
[282] gave a proof of this fact using martingale theory (cf. 
the discussion in [296]). Combining these results with a 
decomposition formula of Shepp’s [276, theorem 71 for 
differential processes gives innovations representations for 
smooth processes as well [285], [181]. 

Besides these generalizations, however, a significant 
aspect of our approach was its provision of a neat stochastic 
interpretation for L&y’s calculations, namely that k(t,s) 
is a least-squares filter, so that we can interpret LCvy’s 
process E(t) as y(t) - 5?(t) = y(t) - y^(t 1 t-). Moreover, 
this interpretation suggests that when z(a) is generated by 
a lumped system, then a Riccati equation can be used to 
compute z^(.) and therefore also to solve the covariance 
factorization problem. This fact explains (see [149], [181]) 
the occurrence of the Riccati equation in the previously 
cited work of Anderson and Moore [98], [127], [140], 
Brandenburg [ 1341, and Geesey [281, ch. II]. Moreover, 
it shows that other algorithms for computing estimates can 
also be used when appropriate, e.g., algorithms of Chan- 
drasekhar type (Section VI). 

Briefly, suppose that we have a process y( *) with cov- 
ariance function as in (32) 

zqt - s) + M(t)@(t,s)N(s)l(t - s) 

+ N’(t)W(s,t)M’(s)l(s - t). (128a) 

The proof of equivalence in the linear case immediately 
gives a factorization result for the covariance of the process 
y. Let us define a Volterra function k via 

Suppose also that the process y(:) arises from some state- 
space model of the form 

(I - k)-’ = Z + k 

or equivalently via the Volterra equation 

(126a) 

i(t) = F(t)x(t) + G(t)u(t), x(0) = x0 (129) 

j(t) = H(t)x(t) + v(t) 

Then 
k + kk = k. (126b) 

with the usual assumptions (19)-(21) on u(.), v(e), x0. The 
least-squares filter (22)-(24) for this state-space model can be 
rewritten as 

Z + K = Eyy’ = (I - k)- lEee’(Z - k’)- 1 

= (I - k)-‘(I - k’)-’ 

i(t) = F(t)R(t) + K(t)E(t), a(0) = 0 (130) 

y(t) = H(t)a(t) + E(t) 

where the gain function K( *), which is defined by 
= (Z + k)(Z + k’). (127) 

Equivalently, we have a canonical representation for v(s), 
viz., 

y = (I + k)E. (128) 

K(t) = P(t)H’(t) + G(t)C(t), P(t) = ET(t)?(t) (131) 

can be calculated via the Riccati equation (27) for P(e), or 
directly via the Chandrasekhar-type equations of Section 
VI if F, G, H are constant. 

This factorization, so natural now, took some time to be 
recognized. Shepp had given a noncausal factorization, 
but could not solve the problem of causal factorization 
[276, pp. 3321. This is now accomplished by (127). This 
result having been obtained, it became clear that for con- 
tinuous K we had just rediscovered the LCvy factorization 
(c.f. (ill)-(114) of Section VIII, where y there is actually 
the integral of the previous JJ). However, our result was 

Now, since E( .) is known to be white, (130) can be regarded 
as another causal model for y(.) driven by a single white 
noise. Also, it is easy to calculate E( *) from y( .): replace 
E by y - H? in the differential equation, calculate 8, and 
then form E as y - HA. Therefore, for a process with a 
known state model (129), (130) defines the innovations 
representation (IR). (This simple fact, widely known by 
now, was to our knowledge first pointed out in [116, 
annendix Dl and exnlicitlv restated in r2841.J somewhat more general; assumption (125) does not I I J I . L 2 , 
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Now the general  studies of Hida and Cramer on  IRS (cf. 
Section VIII) have shown that the IR of a  process v(a) can 
depend only upon the covariance of v(a). Therefore, 
F, K, H in (129) must be determinable (up to state-space 
transformations) from the covariance of y(e), no  matter 
what state mode l we initially assumed. To  do  this we can 
calculate the covariance of v(e) as given by the particular 
mode l (129) and compare with the given expression (128) 
to make the nonunique identifications 

M (t) = H(t), F(t) = i!y @-‘(t,s) 

N(t) = II(t)H’(t) + G(t)C(t). 

The power spectral density matrix is def ined by the values 
for s = io of the function 

s 
m  S,(s) = R(t)ees’ dt 
-co 

= Z  + M(sZ - F)-lN + A”(-sZ - F’)-lA4’. 

(135) 
This is not general ly the form in which the power spectral 
density will be  given, but let us postpone this aspect for a  
while. The  problem is to factor S,(s) as [cf. (14)] 

S,(s) = s,+(s)s,+(-s) 

W e  now use these relations to express the parameters where S,,+(S) is the transfer-function matrix of a  causal and  
(F,H,K) of the IR (130) in terms of (M,@,N). Let causally invertible system with p  inputs and p  outputs. 

Now, for finite time, we have such a  system in the IR 
X(t) A ES?(t)?(t). 

Then by the orthogonality of 2  and 2  we have 

Ex(t)x’(t) A I-I(t) = X(t) + Z’(t) 

so that we can write K( *), as given by (131), as 

K(t) = I-I(t)H’(t) + G(t)C(t) - C(t)H’(t) 

= N(t) - Iqt)W(t). (132) 

Moreover, using (130) and the fact that E( *) is white readily 
yields 

g(t) = F(t)X(t) + C(t)F’(t) + [N(t) - C(t)M’(t)] 

. [N(t) - C(t)M’(t)]‘, E(O) = 0. (133) 

The  stochastic interpretation of C( *) guarantees its existence, 
and  we see that (132) and (133) enable us to calculate K( .) 
from knowledge only of M(e), N( *), and  @( *, a). Therefore, 
(130), (132), and  (133) determine the canonical or innova- 
tions factorization of the covariance (128). The  state mode l 
(129) was only used here to motivate the development of 
the IR, as def ined by (130), (132), (133). The  result can be  
deduced just from the assumption that the covariance in 
(128) is strictly positive definite (cf. [285], [181, appendix 
III]). However, the present derivation does have the 
advantage that it clearly displays the intimate relationship 
between the filtering problem and the factorization problem. 
Thus we see that the state vector of the IR is a( *), so that 
H(t)a(t) = M(t)a(t) can also be  computed directly from 
knowledge of the covariance function; this gives us a  proof 
of the result presented in Section V. O ther applications are 
described in [lSl], [285], [292], [310]. 

which we have designated S,,‘(s) because in the lim it it 
continues to provide the canonical (causal and  causally 
convertible) factor of the power spectral density. From 
(135) and (138), we obtain the useful spectral factorization 
formula 

Z + M(sZ - F)-‘N + N’(-sZ - F’)-%W 

= [I + M(sZ - F)-%][I + K’(-sZ - F’)-%‘]. 

(139) 

As one example, we shall show how to obtain some matrix 
spectral factorization algorithms. 

Multivariate Spectral Factorizations 

Consider a  covariance function R,(e) of the form (128a) 
where M  and N are constant p x n  and n x p matrices, 
respectively, and  

@(t,s) = exp F(t - s), F  = a  stability matrix. (134) 

W e  clearly have several procedures for comput ing R 
and thereby factoring S,(s). W e  can find the unique non- 
negative-definite solution C of the nonl inear algebraic 
equat ion (137), or we can find c as the lim iting solution 
of the Riccati differential equat ion (133); another more 
direct method is to find R as the lim iting solution of the 
Chandrasekhar-type equat ions of Section VI. The  dif- 
ferential equat ion procedures would be  preferred because 
of their simplicity and  automatic production of the right 
c or K, but it is sometimes difficult to control the accumula- 
tion of computational errors until steady state is reached. 
However, the Chandrasekhar-type algorithms seem to 
behave quite well in this regard. The  solution of the quad-  
ratic algebraic equat ion (137) involves choosing among the 
several possible solutions for E and is general ly more 
laborious, though efficient eigenvalue-eigenvector methods 
have recently been proposed [78], [loo], [160]. 

(130), (132), (133). However, when F is stable, it is not hard 
to prove (see, e.g., [126], [135]) that as t -+ co, X(t) in 
(133) will tend to a  constant matrix Z  and hence that 
K(t) will tend to a  constant matrix R 

~=N--~M’ (136) 

where z is the unique nonnegative-definite solution of the 
algebraic Riccati equat ion 

0 = FE + CF’ + [N - %kZ’][N - CM’]‘. (137) 

Then the innovations representation (130) has the transfer 
function 

S,,+(s) = Z  + M(sZ - F)-‘K (138) 
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We now examine the problem of how to handle S,(s) When Z(s) has rational elements, an important tool in 
that are not given in the form (135). The properties of power such studies has been the so-called positive-real lemma, 
spectra show that we can easily write S,,(s) in the form first given by Yakubovic [73} and Kalman [75] for scalar 

S,(s), and extended to the matrix case by Popov [87] and 

S,(s) = 
a polynomial matrix (140) Anderson (see references in [177]). 

Vs)V - s> The positive-real lemma starts with a (nonunique) 

where $(s)$( - s) is a scalar polynomial that is the greatest 
minimal realization of Z(s) in the form 

common divisor of the denominators of all the entries in Z(s) = J + M(sZ - F)-‘N (144) 
qss). 

Now by a partial fraction expansion (or other means) where m inimality means that the square matrix F has lowest 
we can decompose S,(s) as dimension among all possible F that could be used. Then 

it states that Z(s) will be positive real if and only if there 
S,(s) = Z(s) + Z’( -s) (141) exists a real symmetric matrix n 2 0 such that 

- - 
where Z(s) contains all the terms corresponding to the left ’ 
half-plane zeros of $(s)$( - s). We can identify Z(s) as the Jl = 

[ 
&y+j=g,,, 

N-IfA4 >. 1 J+J’ -. (145) 

Laplace transform of the positive-time part of R(t) [cf. 
(1341, U35)l 

Since the .&? matrix is nonnegative definite, it can be 
factored as 

Z(s) = 
s 

m  [$Zd(t) + MeFtN]eFst dt (142) 
0 

A = [ 1 ; [L’ W ’] (146)7 

= +Z + M(sZ - F)-IN. (143) 

Now Z(s) can be regarded as the transfer function of a 
system with impulse response function [$Z + MeF’N], and 
therefore given Z(s) we can find M , F, N by using one of 
several algorithms [129], [306], [360], going from rational 
transfer functions to state-variable realizations. 

Thus we have some new methods for the classical multi- 
variate spectral factorization problem. This problem has a 
long history and several different algorithms have been 
proposed by Wiener and Masani [12], Youla [26], Davis 
[28], Yaglom [23], Rozanov [22], Masani [35], Csaki 
and Fischer [36], Tuel [125], Strintzis [55], and others. 
The method based on solution of the nonlinear algebraic 
equation (137) was first derived in a different way by 
Anderson [104], who used certain connections, initially 
noted by Youla [26] and Kalman [75], [77], between 
spectral factorization and certain functions long familiar 
in network theory. 

The point is that the Z(s) in (142), (143) is not an arbitrary 
transfer function, but a “driving-point” impedance function, 
a property that Brune showed, in a 1931 dissertation that 
essentially founded network theory, is equivalent to Z(s) 
being positive real, viz., that it obeys the conditions 1) all 
elements of Z(s) are analytic in Re s > 0; 2) Z(s) is real 
when s is real and positive; 3) Z(s) + Z’(-s) 2 0, if 
Re s > 0. It can be shown (see, e.g. [177]) that equivalent 
conditions are that Z(s) + Z/(-s) is a power spectral 
density matrix or that 

s 
m  Z(s) = R(t)e-“’ dt 

0 

where R(e) is a nonnegative-definite function (i.e., a 
covariance function). These equivalences enable a con- 
siderable interplay between results in network theory, 
stability theory, control theory, and estimation (see, e.g., 
[771, [871, [1581, [1771). 

where the column size of L and W  is arbitrary. Then an 
alternative statement is clearly that Z(s) will be positive 
real if and only if there exist matrices L and W  such that 

Fn + nF’ = LL’ (147a) 

N-i%kf’=LW (147b) 

J + J’ = W W ’. (147c) 

The significance of L and W  is that they immediately give a 
factorization of S,(s). In fact, we can check that 

S,(s) = Z(s) + Z’( -s) 

= [W + M(sZ - F)+L][W’ + L’(-sZ - F’)-‘M ’. 

(148) 
There are many matrices n that will satisfy (145), and 

consequently there will be many factorizations. The family 
of all such solutions has been studied by Anderson [177], 
Willems [158], Kucera [167], and Canabal [171]. The 
maximum and m inimum n, when they exist, play a signif- 
icant role in the analysis, with the m inimum being the one 
that gives the innovations factorization; the maximum 
relates similarly to a certain dual system. 

We cannot pursue such discussions any further here, 
but it may be interesting to note that related and in fact 
somewhat more general m inimality properties were dis- 
covered by Krein in 1945 (cited in [22]) and by Masani 
[237]. The multivariate estimation problem has many 
fascinating aspects that are not generally known in the 
engineering literature, but we must content ourselves here 
to calling attention to the book [30] and two fine surveys 
by Masani [35], [45]. 

We conclude this section in a more engineering vein. 

7 Such factorizations of the discrete-time time-invariant generaliza- 
tion of the matrix in (145) are at the heart of the square-root algorithms 
mentioned briefly at the end of Section VI. 
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Transfer-Function Models Versus State Models 

The many successes of the state mode l in recent years 
have led to an  unwise neglect of more traditional methods 
and problems. Some examples were discussed in Sections 
VI and  VII. Another example, briefly noted in Section IX, 
is the use of mu ltivariate transfer-function mode ls and 
frequency-domain analysis. Such mode ls are essentially 
the only ones used in the statistical literature, where they 
are known as ARMA (autoregressive-moving average 
mode ls). There are several interesting features associated 
with algorithms that work directly with such mode ls, 
including the possibilities of fewer computations, easier 
proofs of stability, and  more insight into certain structural 
aspects. 

Briefly, suppose we have a  process y( *) such that 

y(n) + A, y(n - 1) + * * f + &y(O) = w(n) 

where 

w(n) = B,u(n) + B,u(n - 1) + * * * + B,u(n - m) 

and u( *) is a  white-noise sequence. Then w(e) is a  moving- 
average process. If Bi = 0, i 2 1, then J( .) is an  auto- 
regressive process; otherwise we have a  mixed or auto- 
regressive-moving average process. The  interesting point is 
that the innovations for u(a) are just the innovations for 
4.1 

p(n 1  n  - 1) = -A, y(n - 1) - * * * - A,y(O) - ti(n 1  n - 1) 

so that 

E(n) = y(n) - $(n 1 n - 1) = w(n) - G(n 1 n - 1). 

The  process w(a) is often much simpler than y(a), e.g., m 
may be  much less than ~2, or the {Bi} may be  constant 
while the {Ai} are time  variant or even nonlinear. These 
possibilities have already been exploited in [ 1311, [ 1751, 
[191], but more can be  done. A useful stimulus to such 
researches is also provided by the relatively recent work of 
Popov [355], [359], Rosenbrock [356], Wang  [358], 
Morf [191], Forney [361], W o lovich [363], and  others, 
which has uncovered the close relationships between linear 
ARMA mode ls and state-space mode ls, thus enabl ing a  
fruitful combination of time-  and frequency-domain 
methods. 

X. KARHUNEN-LO~VE EXPANSIONS : CANONICAL 
CORRELATIONS AND STATE MODELS 

Those familiar with the textbooks on  statistical com- 
mun ication theory in the last decade or so may be  surprised 
that we have not referred to series expansions of random 
processes, and  more particularly to the Karhunen-Loeve 
(K-L) expansions (see, e.g., [341], [342], [40]). Consider 
a  scalar Gaussian process z( *) with a  cont inuous covariance 
R,(t,s) such that 

T T  

ss 
R,‘(t,s) dt ds < co. 

0 0 
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The assumption of Gaussianness is made  for terminological 
convenience; all statements can be  translated in a  standard 
way to apply to just “second-order” processes. 

The  K-L expansion of z( .) is 

where the {Y i( .)} are eigenfunctions of 

s T R,(t,s)Y’,(s) ds = &Yui(t), 

0 

and 

zi = s z(t>yi(t> dt, 
i= 

(149) 

I?,(. , .), viz., 

O<t<T 

1,2,. . . . 

It is known from the theory of integral equat ions that the 
{Y i( .)} are orthonormal 

s 

T 
Yi(t)Yj(t) dt = 6ij 

0  

and that (Mercer’s formula) 

R,(t,s) = 2 iiYi(t)Yi(s). 
1 

(150) 

A simple calculation shows that the coefficients {zi} are 
uncorrelated 

Ezizj = ,liSLj. 

If we temporari ly write the random process as z(t,o), w 
being the probabil i ty-space variable, then the K-L expansion 
is a  decomposit ion of a  function of two variables into a  
sum of products of functions of one  variable 

z(t,o) = -g Zi(w)Yi(t). 
1  

Such decomposit ions are familiar from the partial differential 
equat ions of physics and their significance in random- 
process theory is basically the same. Since the (Yi(*)} are 
deterministic, we can replace study of the uncountable 
family of random variables z(t,w) by that of the countable 
family {Zi(O)}. The  K-L expansions have the further useful 
property that the {zi(w)} are independent because z(.) is 
Gaussian, which simplifies many probabilistic calculations, 
e.g., determination of moments and convergence of sums. 
The  K-L expansion (Karhunen [331], Loeve [329]) was 
independently introduced by Kac and Siegert [330], [331], 
to simplify the calculation of the distribution of the output 
power from a  nonl inear circuit (lim iter-squarer-filter) 
driven by noise. On  more abstract grounds, it had  already 
been introduced in 1943 by Kosambi [328], an  Indian 
statistician and Marxist phi losopher, and  also .by Obukhov 
(in a  1946 dissertation, cited in [346]), Pugachev [339], 
and  perhaps many others. The  popularity of the K-L 
expansion (this terminology is now well entrenched) grew 
from its use in the 1950 Ph.D. dissertation [333] of Gren- 
ander  to extend to stochastic processes the classical theories 
of statistical estimation and hypothesis testing, which had 
been developed for finite families of random variables. 
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The K-L expansion was soon used in estimation problems 
by Davis [335], Slepian [336], and Youla [337]. Its 
presentation in 1958 in the pioneering textbook of Daven- 
port and Root [341] and the many applications in th$ 
widely used 1960 textbook of Helstrom [342] gave the K-L 
expansion a major place in the literature of the sixties. 

Despite these many successes, however, the use of such 
expansions is diminishing for several reasons. One is ,of 
course that K-L expansions really apply only to Gaussian 
(or second-order) processes, while recently martingale 
theory has enabled significant headway to be made with 
non-Gaussian processes (see, e.g., the survey [327] by 

The ease of solving the smoothing equation (151) is heavily 
dependent upon the assumption that z(e) and v(a) are 
uncorrelated, which makes the right side equal to R,(t,s). 
Otherwise we would also have [cf. (9)] the term Ez(t)v(s), 
and now there is no obvious solution. Some reflection will 
show that what really yielded the solution (152) of (151) 
was the simultaneous expansions 

Ez(t)z(s) = R,(t,s) = $ iiYi(t)Yi(s) 

Ev(t)v(s) = s(t - s) = 2 1 . Yi(t)Yi(s) 
1 

Wong). However, this deficiency does not apply to linear 
filtering, the main concern of our survey. Here a common ‘Z(t) = C ZiYi(t) 

complaint is that the K-L expansion does not lend itself Ez~z~ = ;li6ij 
to recursive calculation because the {zi} and {Y i(.)} are 
not easily updated as T increases. Also, since the (zi} Evivj = 6ij 

depend upon the values z(t), for all t E [O,T], K-L ex- and the fact that 
pansions would seem to be more appropriate for smoothing 
problems (data over [O,T]) rather than causal filtering 
problems. 

For example, consider the smoothing integral equation 
(9) for uncorrelated signal z( .) and noise v( .), say (in an 
obvious notation) 

s 

T 
H(G) + H(t,4R,(w) d7 = R,(t,s), 0 r. t,s I T. 

0 

(151) 
The Mercer formula (150) for R,(t,s) now shows readily 
that the solution can be written 

H(Q) = g 1 A, yi(t>yi(s>, 0 5 t,s I T. (152) 
I 

The computational value of such a solution is debatable 
because the {ail and {Yi(.)} are difficult to compute, but 
at least its explicitness is often convenient. No similar 
solution appears possible for the filtering (or Wiener-Hopf) 
equation (10) because of the causality constraint 0 I s < 
t I T. Nevertheless, recently a number of authors [352], 
[353], have shown that, with proper interpretations, series- 
expansion techniques can also be exploited in causal 
filtering problems. The key to these results can be found in 
an old device of Swerling’s (cited in [155]). Swerling 
calculates the filtered estimate .2(t ( t) as 

EZ(t)V(S) ~ 0 j EZiUj = 0, for all i,j. 

But how can dependence between z(e) and v(.) be reflected 
into the {zi} and the {Vi}, especially a one-sided dependence 
as in (4)? This question does not seem to have been raised 
in the engineering literature, rigorous or formal, even though 
dependence is needed to model many problems, e.g., when 
feedbaclc is present. 

The answer is that one should not treat z(.) and v(s) 
separately but should work with the observed process 
y(e) = z(a) + v(a), which has covariance 

Ey(t)y(s) = s(t - s) + K(t,s). 

K(t,s) will not generally be a covariance when z(e) and 
v(e) are correlated, but since Ey(t)y(s) is a covariance one 
can show that K(t,s} (assumed to be continuous in t and s) 
has only a finite number of negative eigenvalues, and the 
Mercer formula extends to such functions as well (Riesz- 
Nagy [385, p. 2421). The emphasis on the observed process 
y(o), as against the signal and noise processes separately, 
is also the key to the development of the recursive Wiener 
filters; cf. the discussion of (128)-(133) in Section IX. 

expansion 

We have passed quickly over the above point that the 
white noise v(a) or its covariance d(t) do not meet the 
conditions for the validity of the K-L expansion (149) or 
the Mercer formula (150). However, the validity of the 

m 

~(t 1 t) = C z^iltYi(t) 
1 

where the {2il,} are smoothed estimates of the coefficients 
(zi} given data on [O,t], and therefore can be determined {+i(.)} = any complete orthonormal family on L,[O,T] 
by solving the smoothing equation(7). The filtered estimate 
can then be put together as an infinite combination of is usually argued on the grounds that any L,-function f( .) 
smoothed estimates. (This reflects in a different way our can be correctly calculated as 
comment in Section II that (10) is a family (but not the 
obvious one) of equations of the form (9).) The recursive 
Kalman filter can be derived along these lines. 

While one common criticism of the K-L approach can 
thus be partly met, there is another more serious difficulty. 

T At> = s .fW(t - s) ds = 1 .f$i(t> 
0 

.fi = ST f(tMi(t> dt, i = 1,2;... 
0 
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Therefore the {pi} can be  chosen as, say, the eigenfunc- 
tions {c$~(*)} of some other covariance, say R,(*;), and  it is 
usually argued that we can write 

V(t) =  i “iyiCt) +  vrem(t) 
1 

where the quantity v,,,( *) needed to make both sides 
“equal” is orthogonal to the signal process z( .) and  can 
therefore be  ignored. W e  do  not wish to push this argument 
too far, though it has been quite successfully used in the 
literature. However, lest one  get too scornful of what some 
people call “engineering nonsense,” we shall show how it 
can be  used to obtain (or let us say conjecture) a  result that 
appeared only much later in the mathematical literature 
(not that this is a  new phenomenon) .  

Expansions of a W iener Process 

W h ite Gaussian noise can be  thought of as the formal 
derivative of a  W iener process w(e) with cont inuous cov- 
ar iance function 

Ew(t)w(s) = m in (t,s). 

Now the eigenfunctions of this covariance are readily 
calculated 

Y,,(t) = (2/T)‘/” sin [(2n - l)nt/2T], n  = I,.** 

so that the K-L expansion is 

w(t) = 2 w,Y,(t) 
1 

results can also be  heuristically explained by using white 
noise, but we shall give a  slightly different explanation. 

Reproducing Kernel Hilbert Spaces 

The time  functions {Y,(e)} in the K-L expansion are 
orthogonal over [O,T] in the sense that 

f 
T  (yi,y,j> =  Yi(t)Yj(t) dt = 6zj. 

0  

This property does.not hold for the {Qi} 

but if we define a  new inner product as 

(4.M(.)>Hcw, = s T  * a(t)b(t) dt + a(O)b(O) 
0 

then it is easy to see that 

for all choices of the {Qi(*)}. This inner product is ap- 
propriate for the W iener process w(.). For other processes, 
we can determine suitable inner products that will make 
the corresponding expansions have simultaneously ortho- 
gonal  random variables and time  functions. The  only 
special feature of the K-L expansion is that the time  
functions are orthogonal with respect to the L,(dt) inner 
product. However, there is nothing sacred about L, or 
about Lebesgue measure dt; we could, for example, use a  
measure p(t)dt, where p(.) is a  weight function such that 

where the {w,} are uncorrelated random variables with 
variances {4T2/(2n - 1)2rc2). However, since formally ss 

R2(t,s)p(t)p(s) dt ds < UZI. 
I I 

s t w(t) = 44 dz, u( .) = white noise 
0 

we can also write 
m  

w(t) = c Via+(t) 
1 

where the {vi} are uncorrelated unit-variance random 
variables 

s 

t 
pi = qO i(z) dz 

0 

and the {pi} are any complete orthonormal set in 
~,[Wl. 

Thus we can get many expansions for w(a), each with 
uncorrelated random variables {wi}, but with dzfirent 
families of deterministic functions Q i(*). The  {wi} can be  
calculated as 

T 
T  wi = 

s 
~i(t)U(t) dt = Vi(t) dw(t). 

0  s 0 

For most purposes these expansions are almost as useful 
as the K-L expansion (149). The  previous result was first 
obtained by Shepp [276] and  has since been extended to 
fairly general  (non-Wiener) processes [350]. These general  

This leads to expansions that are orthogonal in L,(p(t)dt) 
norm. In fact, to avoid dependence on  such arbitrary weight 
functions p(.) or on  the arbitrary family {qi(*)}, it is 
desirable to try to seek an  “intrinsic” norm associated 
just with the covariance of the process w(.). The  norm 
< 2  hz(W) is just such a  norm, and it is called a  reproducing 
kernel norm because of the property 

<Rw(t7s)dd)Hcw, = m(t) 
for all m(o), such that 

Ilm ll&wj = <m(.>,m(~>>Hc,j < ~0. 
Such reproducing kernel Hilbert spaces (RKHS) were 

introduced into stochastic process theory by Lotve in 
1948 (cf. [274, appendix I]), and  their usefulness in statistical 
applications has been made  clear, notably by Parzen [347]. 
Many other references as well as some tutorial explanations 
and applications are discussed in [347], [349], [311]. 
However, it should be  noted here that engineers have 
general ly tended to think only of the space L, whenever 
Hilbert space is mentioned, perhaps on  the grounds that 
L, is isomorphic to any Hilbert space. But the norm is the 
most important feature of a  Hilbert space, and  isometries 
(norm-preserving isomorphisms) are more significant than 
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additive isomorphisms. The theory of RKHS shows that used it for the calculation of mutual information [338]. 
there are many other quite different and quite useful Some especially interesting results are obtained when the 
Hilbert spaces besides L,. two families of random variables are the past and future 

There are many other aspects of series expansions that of the same random process. Yaglom has shown that the 
could be discussed (some are noted in Wong’s survey past and future (and in fact any two disjoint segments) of a 
[327]), but we shall conclude with a discussion of a some- nondeterministic continuous-time process have a finite 
what different type of process representation. number of canonical variables if and only if the process has 

Canonical Correlations and State Models 

Since series expansions generally contain an infinite 
number of terms, they cannot be used directly without 
truncation to a finite number, and this brings up the 
question of which terms to keep. It is usually suggested 
that we keep the coefficients that have maximum variance. 
However, calculations of least-squares estimates on this 
basis have not been very satisfactory, especially for processes 
with rational spectral density. The reason is roughly that 
the whole data interval enters equally into the determination 
of all the series coefficients, whereas, for example in pre- 
diction, the most recent observations should make a larger 
contribution. The state-space description of random 
processes reflects this circumstance better, but there is 
another quite general statistical technique that is roughly 
equivalent. This is the so-called theory of canonical cor- 
relations, which was independently developed in the mid- 
thirties by Hotelling and Obukhov (cf. [346]). [Incidentally, 
Hotelling was apparently the first to use eigenvalue-eigen- 
vector decompositions (the finite analogs of the K-L 
expansion) in statistics (in a 1933 paper in the Journal of 
Educational Psychology).] 

These authors proposed the following method for studying 
the interrelations between two (full-rank) families of random 
variables {X1,X,; * *,X,} and {Y1,Y,;. . Y,}. First find the 
linear combinations 

u, = i cc,,xi, vl = $ PliY, 
1 1 

that have the largest cross-correlation coefficient 

p1 = EU,VI/JEU12EV12. 

Next find linear combinations U, and V, that are uncor- 
related with (U,,V,) and have maximum correlation 
coefficient, and so on until a new set of random variables 
(U,,U,,* * *,u,, v1; * * ,V,) has been found that span the 
same space as the {X1,X2; . -,X,,, Y,; . *,Y,} and are pair- 
wise uncorrelated, except for the pairs (Ui,Vi), i = 1,. * a, 
min (n,m). The actual calculation can be shown to be 
equivalent to the solution of a certain eigenvalue problem 
(see, e.g., [340]). 

It is reasonable that in making inferences about the 
{ Yi} from the {Xi}, the first few canonical variables { Ui} 
should give us more information than the first few coef- 
ficients of the discrete-time analog of the K-L expansion. 
This observation was made by Yaglom [346], who with 
Gelfand generalized the theory to the case of continuous- 
time random processes (x(s), s E S} and {y(t), t E T}, and 

a rational spectral density. 
Recent studies in automata theory and algebraic system 

theory [119], [129], h ave shown that the analysis of a 
system in terms of past and future leads naturally to a 
“state-space” description. Related ideas can be recognized 
in an interesting but somewhat obscure paper by Levinson 
and McKean [345]. For a stationary process y(s), they 
introduce, among others, the subspaces 

B Ca,b) = the linear (Hilbert) space spanned by the random 

variables (y(r), a I z 5 b) 

B, = B(,,,, = the future 

B- = Bc-m,oj = the past 

B+,- = the prqjection of B, on B- 

B o+ = ,?, %.a)~ 

B, + is called the germ field [343] and B, , _ is the minimal 
splitting field of past and future, viz., it is the smallest field 
such that, given B,, --) B, is independent of B-. [There 
are clearly many splitting fields, e.g., B-; the proof that 
B+,- is the minimal field was given by McKean in a 
fascinating paper [344] on multidimensional Brownian 
motion.] These concepts are clearly related to the notion of 
state, and with this in mind we should not be surprised that 
B, l - is finite-dimensional if and only if y( a) has a rational 
spectral density or that B,, _ = Bo+ if and only if the 
spectral density has no zeros [345], [261a]. Recall that the 
state of a system can be determined from the output and 
its derivatives, without knowledge of the input, if and only 
if the transfer function has no zeros. 

It can be proved that the canonical variables for the sets 
{y(r), r r 0} and {y(z), z I 0} are a useful basis for the 
state-space B, , --) and this fact has recently been cleverly 
exploited by Akaike [316] to study state-space modeling. 
In particular he obtains a stochastic interpretation of the 
Ho-Youla-Silverman and other algorithms for determining 
a minimal state-space realization of an impulse response. 
We cannot pursue these matters any further here, though 
as a final comment we may note that the canonical cor- 
relations would seem to be useful in more problems than 
those to which they have been explicitly applied so far. 

XI. CONCLUDING REMARKS 

In this survey, we have described several well established 
and widely used results and on occasion we have also 
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indicated some areas for further work and some new 
directions.* 

One  important trend is the growing interplay between 
linear system theory and linear filtering theory. This is 
reinforced by the growing realization in both fields of the 
importance of understanding the underlying structural 
features and invariants of dynamical l inear systems and 
of the stochastic processes that can be  generated from them. 
This structural knowledge is bound to be  useful in all 
applications where linear systems and stochastic processes 
arise, ranging from long-distance communicat ion problems 
to the analysis of single circuits. 

Another obvious direction is into nonl inear filtering. 
Actually the last decade has seen a  considerable effort to 
extend the Kalman filter to nonl inear problems. This vast 
area will have to be  surveyed separately, but some important 
aspects should be  ment ioned here. 

Recursive formulas for updat ing the least-squares estimate 
(the conditional mean)  were first obtained by Stratonovich 
[65], [66], and  Kushner [86]. However, it was found that 
in general  the formulas involve all the conditional moments,  
so that an  infinite .set of simultaneous equat ions (or 
equivalently, a  partial differential equat ion for the con- 
ditional probability density or the conditional characteristic 
functional) is necessary. There is still no  consensus as to a  
satisfactory way of “truncating” this set of equations, 
which incidentally is also encountered in other fields such 
as fluid mechanics and quantum mechanics [388]-[390]. 
Furthermore, no  other computationally satisfactory ap- 
proaches to solving directly, even approximately, the 
partial differential equat ions seem to be  at hand, though 
spline function approaches do  hold out some promise. 

At the moment,  one  of the chief benefits of having 
attacked the nonl inear problem was that it brought to the 
fore certain difficulties associated with the proper definition 
of the differential and  integral equat ions used to describe 
nonl inear operat ions on  white noise. For nearly the first 
time, as far as engineers were concerned, the use of different 
definitions of integrals made  a  difference to the answer, 
rather than just to the “rigor” of the proofs. It also affected 
the proper mode ling of physical nonl inear problems. Wong  
and Zakai [277], McShane [277a], [277b], and  others have 
made  important contributions to this subject, but there 
are still many unresolved questions. Nevertheless, this 
work pointed the way to the introduction of martingale 
theory into communicat ion and control problems, a  fact 
whose significance will probably far outreach any specific 
nonl inear filtering problems. This point has been discussed 
at greater length in Wong’s survey [327] ; see also [298]. 

s It perhaps goes  without saying that we have conf ined ourselves 
for many reasons to the theory of l inear filtering and  in particular to 
the probabilistic theory, where knowledge of all statistical parameters 
(e.g., means  and  covar iances) is assumed.  The development of a  
statistical theory of filtering will introduce several new dimensions, 
a l though it might be  noted that the lack of a  complete statistical 
theory does  not seem to have significantly limited the successful  use 
of the ideas of the probabilistic theory. 

It should be  noted that the previously ment ioned un- 
expected difficulties with mode ls and integrals lent the 
nonl inear recursions more than academic interest. Wonham 
gave the first r igorous proof, but only for signals taking 
finitely many values (e.g., finite Markov chains) [97]. 
O ther proofs have since been constructed for more general  
signals, but under  rather complicated and physically 
obscure conditions. In particular, dependence of the signal 
on  feedback observations was excluded. As noted in Section 
IX, Fujisaki et al. have recently used the innovations 
approach to overcome most of these difficulties. 

However, al though such rigorous proofs are of interest, 
their ma in contribution is to highlight the fundamental  
difficulties in the way of practical opt imum filtering. Despite 
ma jor efforts (see, e.g., the proceedings of many recent 
symposia) the field is in some disarray. A good account 
of some of the more successful efforts is given by Jazwinski 
[138]. I bel ieve that the situation is somewhat analogous 
to that of l inear filtering in the m id-fifties, when the field 
was rapidly grinding to a  halt am id a  welter of numerous 
attempts at direct extensions of the W iener filter. The  
Kalman filter provided a  new impulse that moved things 
out of the doldrums into a  new and fruitful direction. 
Similarly in nonl inear filtering it may be  that attempts to 
solve the nonl inear filtering problem along the lines of the 
successful Kalman linear filter are m isdirected. Some new 
approach needs to be  uncovered. 

Perhaps the way to begin is by lowering our sights by 
restricting ourselves to parameter estimation rather than 
to estimation of rather general  stochastic processes. Even 
this is a  difficult subject, which will not even be  outl ined 
here. However, I bring it up  because recently information- 
theoretic’ ideas have been found to be  useful in getting 
error bounds for such finite-parameter problems (see, e.g., 
[3771-WI, [W), and to a  small extent for certain 
infinite-parameter (or stochastic-process) problems as well, 
see [383]. Furthermore, recently Blahut [382] and  others 
have begun to show how the basic results of information 
theory can also be  il luminated by the use of some simple 
hypothesis-testing and parameter-estimation problems. 
This interchange will be  valuable and is in fact somewhat 
overdue, which brings me  to my final point. 

At many times in the twenty-five years of information 
theory there has been a  not inconsiderable dissatisfaction 
with the scope, development,  and  application of the theory. 
This may or may not (probably not) have been justified, 
but it is interesting, at least in my opinion, that the fields 
of signal detection, estimation, and  stochastic processes 
have not exper ienced such traumas. It seems to me  that the 
reason lies in the actively pursued connect ions between 
these subjects and many other topics. “Strict-sense” 
informa.tion theory, al though a  beautiful and  important 
subject, has suffered by its partially deliberate insularity 
and  isolation. The  numerous interconnections of statistical 

’ In the Shannon sense.  
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signal processing with other fields, as richly displayed 
even in the small subdomain of linear filtering that we have 
surveyed, is perhaps the surest guarantee of its continued 
vitality. It has never been other than a pleasure for me to 
have worked in such a field. 
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A New Estimator for an Unknown Signal 
Imbedded in Additive Gaussian Noise 

MANOUCHEHR MOHAJERI, MEMBER, IEEE 

Absiruci-Estimation of an  unknown signal observed in the presence 
of an  addit ive Gaussian noise process is reduced to the problem of 
estimating an  unknown complex parameter.  A new class of estimators 
for an  unknown complex parameter is introduced, and  their b iases and  
mean-square errors are studied. The performance of a  particular member  
of this class (c-a estimator) is compared with that of the maximum- 
l ikelihood (ML) estimator, and  it is shown that the c-a estimator reduces 
considerably the mean-square error for small values of SNR, at the 
expense of introducing a  small bias. The c-a and  ML estimators of a  
complex parameter are appl ied to the problem of signal estimation, and  
some interesting numerical results are presented. 

I. INTRODUCTION 

I N MANY communicat ion problems, such as the dis- 
crimination of small-magnitude seismic events, the back- 

ground noise causes serious difficulties. Seismic discrimin- 
ants such as complexity (ratio of the signal energy in two 
different time  intervals) and  spectral ratio (ratio of the 
signal energy in two different frequency bands) are powerful 
tools for discrimination of large-magnitude seismic events 
[l], [2]. When  the event magn itude diminishes, the noise 
becomes so critical that these discriminants lose their 
identification capabilities, and  therefore one has to search 
for different means of noise reduction. 
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Although various array processing methods have been 
emp loyed, and  significant improvements in the signal-to- 
noise ratio have been obtained, there still remains a  residual 
noise that needs further reduction [3]. Since by their very 
nature seismic signals are unknown, this noise reduction 
should be  treated as an  unknown signal estimation problem. 

One  widely used technique for estimating an  unknown 
signal is the maximum-l ikel ihood (ML) estimation procedure 
[4]. When  the additive noise process is Gaussian, this 
estimator has a  simple structure, and  it chooses the observed 
waveform as the signal estimate. The  ML  estimate of an  
unknown signal, observed in the presence of an  additive 
Gaussian noise process, is an  unbiased efficient estimate of 
the signal, and  makes no  use of the knowledge of the noise 
spectrum. 

In this paper  we introduce a  new class of signal estimators 
which take advantage of the noise spectrum and which are 
general ly biased. The  reason for introducing such biased 
estimators is to reduce the mean-square error at small 
signal-to-noise ratios. Analysis of the performance of a  
particular member  of this class of estimators shows that, at 
the expense of introducing a  small bias, a  considerable 
reduction in the interval mean-square error, relative to the 
mean-square error of the ML  estimator, is attainable. 
In seismic signal estimation, the noise process is short- 
term stationary and this method of estimation proves to be  
extremely useful. For such a  noise process an  updated 
estimate of the noise spectrum is used in the structure of the 
signal estimator. 


