Department of Electrical Engineering, IIT Madras

EE3005: Communication Systems

Tutorial #5

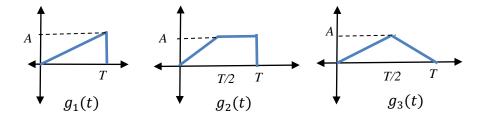
From the enclosed scanned problem sheets below(<u>*Courtesy*</u>: taken from the book "Probability, RVs, and Stochastic Processes", by A. Papoulis, 2ndEd., Chapter 6, pp-147,) do the following problems:
 6-1 to 6-3, 6-5 to 6-10. Use the method of "dummy variable" wherever it makes sense.

2. In a fair-coin experiment, we define a random process (RP) X(t) as follows: X(t) = sin (πt) is heads show, and X(t) = 2t if tails show.
(a) Find E[X(t)]
(b) Find the one-dimensional (first-order) PDF of X(t_i) for (i) t₁ = 0.25; (ii) t₂ = 0.50; (iii) t₃ = 1.0;

3. The RP $X(t) = e^{At}$ is a family of exponentials based on the RV A with a pdf $f_A(a)$. Express $R_X(t_1, t_2)$ and the first order PDF $f_X(t)$ in terms of $f_A(a)$.

4. The RV β be uniform in the interval (0,*T*). The RP is defined by $X(t) = U(t - \beta)$ where U(.) is the unit-step function. Find the expression(s) for $R_X(t_1, t_2)$.

5. Show that if the RP V(t) has $R_V(t_1, t_2) = g(t_1)\delta(t_1 - t_2)$ and the RP $W(t) = \int_0^t V(\tau)d\tau$ then, $E[W^2(t)] = \int_0^t g(\tau)d\tau$


6. Show that if the RP X(t) has $R_X(t_1, t_2) = g(t_1)\delta(t_1 - t_2)$ and the RP Y(t) = X(t) * h(t) where the symbol "*" represents linear convolution, then,

$$E[X(t)Y(t)] = h(0)g(t)$$

7. The discrete RP X(n) is WSS with $R_{XX}(m) = 5\delta(m)$. Given Y(n) - 0.5Y(n-1) = X(n) (1) (a) Find $E[Y^2(n)], R_{XY}(m_1, m_2), \& R_{YY}(m_1, m_2)$ when (1) holds for all *n*.

(a) Find $E[Y^2(n)], R_{XY}(m_1, m_2), \& R_{YY}(m_1, m_2)$ if Y(-1) = 0 and (1) holds for all $n \ge 0$.

8. Consider the following "pulse-shapes" and answer the following questions given that θ is a uniform RV between (0,*T*):

(a) If the RP X(t) is given by $X(t) = \sum_{k=-\infty}^{+\infty} g_i(t - kT - \theta)$, for each choice of $g_i(t)$, i = 1, 2, &3 find (i) The first order PDF $f_X(x)$ and (ii) the expected value $m_X = E[X]$.

(b) If the RP Y(t) is given by $Y(t) = \sum_{k=-\infty}^{+\infty} \alpha_k g_i(t - kT - \theta)$, where the discrete RV $\alpha_k \in \{-1, +1\}$ takes both values with equal probability, then, for each choice of $g_i(t)$, i = 1, 2, & 3 find (i) The first order PDF $f_Y(y)$ (ii) the expected value $m_Y = E[Y]$, and (iii) the expression for $R_Y(t_1, t_2)$ and also plot this function if it represents a WSS process.

KG/IITM/ Apr. 2025