Course Outline
Introduction:
The spectral estimation problem and its applications---classical and model-based approaches---issues in spectral estimation.
Review of Probability, Statistics and Random Processes:
Random process characterization---bias and variance---ergodicity.
Classical Spectral Estimation: Periodogram---averaged periodogram---Blackman-Tukey spectral estimator---bias/variance trade-off.
Parametric Modelling:
Rational transfer function models---model parameter relationships to
the auto-correlation---examples of AR, MA, and ARMA processes---issues
in model fitting.
Autoregressive Spectral Estimation:
Properties of AR processes: connection to linear prediction and the
minimum-phase property---Levinson-Durbin recursion---lattice filter
representation---implied ACF extension---connection to maximum entropy
spectral estimation---MLE of AR parameters---statistics of the
MLE---spectral flatness measure and the effects of noise on the AR
spectral estimator---AR spectral estimation algorithms
(auto-correlation, covariance, modified covariance, and Burg)---model
order selection.
Moving Average Spectral Estimation: The MA spectral estimator---MLE estimation: Durbin's method---statistics of the MA parameter estimates.
Autoregressive Moving Average Spectral Estimation:
Maximum-likelihood estimation---statistics of the ML estimates---ARMA
spectral estimation mthods (Akaike approximate MLE, modified
Yule-Walker equations, least-squares modified Yule-Walker
equations).
Minimum Variance Spectral Estimation:
Filtering interpretation of the periodogram---introduction to
BLUE---the minimum-variance spectral estimator---comparison of MVSE and
AR spectral estimators (statistical properties, resolution, and implied
ACF extension).
Sinusoidal Parameter Estimation:
MLE of one sinusoid---extension to the multiple sinusoid
case---eigenvector analysis of the covariance matrix---Pisarenko
Harmonic Decomposition---principal component method---Kumaresan-Tufts
method---MUSIC---approximate MLE methods---iterative filtering
algorithm.