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The Discrete Fourier Transform (DFT)

@ DFT of an N-point sequence x,, n=20,1,2,..., N —1is
defined as

N-1
Xe=Y xe T k=0,1,2,- N1
n=0

@ An N-point sequence yields an N-point transform

@ X can be expressed as an inner product:

X0

. . . X
Xe= |1 e W e W2 e_f%(’v_l)] '

XN—-1
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The Discrete Fourier Transform (DFT)

) o
@ Notation: Wy = e~ . Hence,

o
X
X, — [1 wk wak . W,S,N_l)k} !

@ By varying k from 0 to N — 1 and combining the N inner
products, we get the following:

X = Wx

@ W is an N x N matrix, called as the “DFT Matrix"
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The DFT Matrix

11 1 1 |
1 Wy Wz oo Wyt
W=|1 W we o W
1 W/(/Vfl Wﬁl(Nfl) WISIN*I)(N*I)

- NxN

@ The notation Wy is used if we want to make the size of the
DFT matrix explicit
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How Many Complex Multiplications Are Required?

Each inner product requires N complex multiplications
o There are N inner products

e Hence we require N multiplications

@ However, the first row and first column are all 1s, and should
not be counted as multiplications

e There are 2N — 1 such instances

e Hence, the number of complex multiplications is N? — 2N + 1,
ie, (N—1)>2
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How Many Complex Additions Are Required?

@ Each inner product requires N — 1 complex additions
o There are N inner products

@ Hence we require N(N — 1) complex additions
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Total Operation Count

o No. of complex multiplications: (N — 1)?
@ No. of complex additions: N(N — 1)

@ The operation count for multiplications and additions assumes
that W,’(, has been computed offline and is available in memory

o If pre-computed values of Wy are not available, then the
operation count will increase

@ We will assume that all the required W,(‘, have been
pre-computed and are available
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Operation Count Makes DFT Impractical

@ For large N,
(N —1)% ~ N?
N(N — 1) ~ N?

@ Hence both multiplications and additions are O(N?)
o If N =103 then O(N?) = 105, i.e., a million!

@ This makes the straightforward method slow and impractical
even for a moderately long sequence
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The Divide and Conquer Approach

@ Suppose N is even and we split the sequence into two halves.

e Each sequence has N/2 points

N
@ Suppose we compute the > point DFT of each sequence

N

e Multiplications: 2 x (5)2 = ’VTQ

@ Suppose we are able to combine the individual DFT results to
get the originally required DFT

e Some computational overhead will be consumed to combine
the two results

o If N; + overhead < N?, then this approach will reduce the
operation count
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The Divide and Conquer Approach

Let N=38

@ Straightforward implementation requires, approximately, 64
multiplications

@ The “divide and conquer” approach requires, approximately,
2 % (%)2 + overhead, i.e., 32 + overhead multiplications

@ Questions:

o Can the two DFTs be combined to get the original DFT ?
o If so, how? What is the overhead involved ?

o Will 32 + overhead be less than 647

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 10 / 30



The Decimation in Time (DIT) Algorithm

e From {x,} form two sequences as follows:

{&n} = {x2n} {hn} = {xen+1}

e {gn} contains the even-indexed samples, while {h,} contains
the odd-indexed samples

@ The DFT of {x,} is

X =
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The Decimation in Time (DIT) Algorithm

o But,

2rk _ o—i%F(2rk) _ —j 255 (rk) _ yasrk
W N =e "N WN/2

and hence

N1 N1
X = Zg, +WNZh

= Gk+WNHk k:O,l,...,N—l

o {Gx} and {Hy} are § point DFTs

@ The overhead for combining the two ¥ > point DFTs is the
multiplicative factor Wk for k =10, 1 ,N—1

° W,C is called “twiddle factor”
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The Decimation in Time (DIT) Algorithm

@ The N/2 point DFTs { Gy} and {Hy} are periodic with period

N/2
° Gk_,_%:Gk
Hiyy = Hi
N
o Wi = —wk

@ Hence, if Xk = G, + W,(‘,Hk, then Xk+ﬂ = Gy — W,(‘,Hk
2
° W,ﬁHk needs to be computed only once for k = 0 to % -1

@ Thus, the multiplication overhead due to the twiddle factors is
N
only 5
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Butterfly Diagram
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The Decimation in Time (DIT) Algorithm

G[0]
x[0] o——] X[0]
wh

N

2lo—>— X[1]

x[4] o—>—1 DFT 'Wx[z]

x[6] o—>—] X[3]
XXX K

x[1] o—>—

x[3] o—— X[5

X2 g,po.m H[1] \

x[5] o—— DFT X[6
H[2) %

x[7] o—— X[7I

Figure 9.4 Flowgraph of Decimation in Time algorithm for N = 8 (Oppenheim and Schafer, Discrete-Time Signal
Processing, 3rd edition, Pearson Education, 2010, p. 726)
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“Divide and Conquer” Results in Savings!

@ For N = 8, the straightforward approach requires,
approximately, 64 multiplications

@ The “Divide and Conquer” approach, after the first stage,
requires 32 + 4 = 36 multiplications

@ Thus, this approach clearly reduces the number of additions
and multiplications required
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Reusing the “Divide and Conquer” Strategy

@ The same idea can be applied for calculating the % point
DFT of the sequences {g,} and {h,}

o Computational savings can be obtained by dividing {g,} and
{h,} into their odd- and even-indexed halves

@ This idea can be applied recursively log, N times if N is a
power of 2

e Such algorithms are called radix 2 algorithms
o If N =27, then the final stage sequences are all of length 2
e For a 2-point sequence {po, p1}, the DFT coefficients are

Po = po + p1 P1=po—p1
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DIT Flowgraph for N = 8
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Figure 9.11 Flowgraph of Decimation in Time algorithm for N = 8 (Oppenheim and Schafer, Discrete-Time Signal
Processing, 3rd edition, Pearson Education, 2010, p. 730)
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Overall Operation Count

@ The direct method requires N? multiplications

o After the first split, N> — 2 (%)2 + 4

o 2 is due to the twiddle factors

@ After the second split, (%)2 2 (%)2 + %

Hence,

w28+ 5 a5y
~~ ~——
first stage second stage

@ Generalizing, if there are log, N stages, the number of

C . . N
multiplications needed will be, approximately, 5 log, N
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Overall Operation Count

K+ . . .
o If WN+2 = —W,(‘, is not considered, the overhead count will
be N and not %
@ In this case,

N2—>2(%)2+\I\,//—>4(%)2+N+N

first stage second stage

@ Hence the overall multiplication count will be N log, N

@ For N = 1024
N2 = 1,048,576 N log, N = 10,240

Savings of two orders of magnitude!
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Input Sequence Order

@ Recall that, for N = 8, the first split requires the data to be
arranged as follows:
X0, X2, X4, Xe, X1, X3, X5, X7

@ In the second and final split, the data appear in the following
order:
X0, Xa, X2, X6, X1, Xs, X3, X7

@ The final order is said to be in “bit reversed” form:

Original Binary Form Reversed Form Final
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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An Algorithm For Sequence Reversal

@ Consider the card sequence 7, 8, 9, 10, J, Q, K, A
@ First, reverse pairwise:

087109 Q J A K
@ Then swap the adjacent pairs:

0 10,9, 87 A K Q J

Finally, swap the two groups of 4 (each group is half the
original size):

o A K Q, J 10, 9 8 7 Done!
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How To Use It For Bit Reversal

The first step of swapping of bits pairwise can be done with
bitwise AND/OR and bit shift operators

@ Pick out the even and odd bits by using masks

o ABCDEFGH & 01010101 = 0BODOFOH
ABCDEFGH & 10101010 = A0OCOEOGO

Left shift the first result and right shift the second result

o BODOFOHO
o 0AOCOEOG

Bitwise OR the above results

o BODOFOHO & 0AOCOEOG = BADCFEHG

(]

Pairwise bit swapping accomplished!
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C Code For Bit Reversal

unsigned reverse_bits(unsigned input)

{

//works

input = (input
input = (input
input = (input
input = (input
input = (input

return input;

}

@ Bit reversal for the entire array can take a large overhead if

&

&
&
&
&

on 32-bit machine

0x555556555)
0x33333333)
0xOFOFOFOF)
0x00FFOOFF)
0x0000FFFF)

performed inefficiently

@ There are several efficient algorithms for sorting an array in

bit-reversed order
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OxAAAAAAAR)
0xCCCCCCCe)
0xFOFOFOFO0)
0xFFOOFFO00)
0xFFFF0000)

>>
>>
>>
>>
>>

e Bit reversal on uniprocessors by Alan H. Karp, SIAM Review,
Vol. 38, March 1996, pp. 1-26

e http://www-graphics.stanford.edu/~seander/
bithacks.html#BitReverseTable
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In-Place Computation

@ Notation:
o First stage: X,EO) = Xk

o Last stage: X,ElogZ N — X
@ For the m-th stage butterfly
o Input: X{™ 1, x{m=1)
e Output: X,E"’), Xém)
@ The corresponding equations are
X(m) _ X(m—l) Wr X(m—l)
p = 7p + Wiy Xq
X(gm) _ X[gmfl) . W[(/ Xémfl)
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In-Place Computation

X’gm—l) ~ ~ X[gm)

Xcgmfl) o —-D X(gm)
_ WN

o X{™ 1) and X{™ ) are needed for computing X{™ and X{™
@ They are not needed for any other pair
@ Hence
X\ — X§
X{™ — x§m=1

@ This is called “in-place computation”

m—1)
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In-Place Computation

=GRV
x[4] o i X[1]

o XX\
x[2] o >< X[2]

6CW
x[1]o i X[4]
g >
x[5]o i
1

x[3]o

x[7] o

@ xp and x4 are not needed once that butterfly is computed

@ Hence they can be overwritten with the results of the
butterfly computation

e Same is true for other pairs also
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The Decimation in Frequency (DIF) Algorithm

@ Another method of splitting the input sequence into half is as
follows:
X0, X1, X2, X3, X4, X5, X6, X7

@ Similar savings are obtained in this case also
@ The output Xy will now appear in bit reversed order

@ This method is called as the Decimation in Frequency
algorithm
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DIF Flowgraph for N = 8
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Figure 9.22 Flowgraph of Decimation in Frequency algorithm for N = 8 (Oppenheim and Schafer, Discrete-Time
Signal Processing, 3rd edition, Pearson Education, 2010, p. 740)
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Prime Factor Algorithms

@ When N is not a power of 2 but is a composite number, it can
be expressed in terms of its prime factors

o Example: N=6=3x2

@ We can now split the given sequence into 3 segments of 2
samples each

° X0, X3, X1y X4, X2, Xg

@ Three 2-point DFTs are computed and combined to get the
final DFT

@ Significant computational savings is obtained, as before

o Efficient algorithms exist even when N is prime!
e http://en.wikipedia.org/wiki/Rader’s_FFT_algorithm
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