
Introduction to the Fast-Fourier
Transform (FFT) Algorithm

C.S. Ramalingam

Department of Electrical Engineering
IIT Madras

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 1 / 30



The Discrete Fourier Transform (DFT)

DFT of an N-point sequence xn, n = 0, 1, 2, . . . ,N − 1 is
defined as

Xk =
N−1∑
n=0

xn e
−j 2πk

N
n k = 0, 1, 2, · · · ,N − 1

An N-point sequence yields an N-point transform

Xk can be expressed as an inner product:

Xk =
[
1 e −j 2πk

N e −j 2πk
N

2 . . . e −j 2πk
N

(N−1)
]


x0

x1

...

xN−1


C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 2 / 30



The Discrete Fourier Transform (DFT)

Notation: WN = e−j 2π
N . Hence,

Xk =
[
1 W k

N W 2k
N . . . W

(N−1)k
N

]


x0

x1

...

xN−1


By varying k from 0 to N − 1 and combining the N inner
products, we get the following:

X = Wx

W is an N × N matrix, called as the “DFT Matrix”

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 3 / 30



The DFT Matrix

W =



1 1 1 · · · 1

1 WN W 2
N · · · WN−1

N

1 W 2
N W 4

N · · · W
2(N−1)
N

...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)(N−1)
N


N×N

The notation WN is used if we want to make the size of the
DFT matrix explicit

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 4 / 30



How Many Complex Multiplications Are Required?

Each inner product requires N complex multiplications

There are N inner products

Hence we require N2 multiplications

However, the first row and first column are all 1s, and should
not be counted as multiplications

There are 2N − 1 such instances

Hence, the number of complex multiplications is N2 − 2N + 1,
i.e., (N − 1)2

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 5 / 30



How Many Complex Additions Are Required?

Each inner product requires N − 1 complex additions

There are N inner products

Hence we require N(N − 1) complex additions

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 6 / 30



Total Operation Count

No. of complex multiplications: (N − 1)2

No. of complex additions: N(N − 1)

The operation count for multiplications and additions assumes
that W k

N has been computed offline and is available in memory

If pre-computed values of W k
N are not available, then the

operation count will increase

We will assume that all the required W k
N have been

pre-computed and are available

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 7 / 30



Operation Count Makes DFT Impractical

For large N,

(N − 1)2 ≈ N2

N(N − 1) ≈ N2

Hence both multiplications and additions are O(N2)

If N = 103, then O(N2) = 106, i.e., a million!

This makes the straightforward method slow and impractical
even for a moderately long sequence

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 8 / 30



The Divide and Conquer Approach

Suppose N is even and we split the sequence into two halves.

Each sequence has N/2 points

Suppose we compute the
N

2
point DFT of each sequence

Multiplications : 2×
(
N
2

)2
= N 2

2

Suppose we are able to combine the individual DFT results to
get the originally required DFT

Some computational overhead will be consumed to combine
the two results

If N2

2 + overhead < N2, then this approach will reduce the
operation count

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 9 / 30



The Divide and Conquer Approach

Let N = 8

Straightforward implementation requires, approximately, 64
multiplications

The “divide and conquer” approach requires, approximately,

2×
(

8
2

)2
+ overhead, i.e., 32 + overhead multiplications

Questions:

Can the two DFTs be combined to get the original DFT ?

If so, how ? What is the overhead involved ?

Will 32 + overhead be less than 64 ?

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 10 / 30



The Decimation in Time (DIT) Algorithm

From {xn} form two sequences as follows:

{gn} = {x2n} {hn} = {x2n+1}

{gn} contains the even-indexed samples, while {hn} contains
the odd-indexed samples

The DFT of {xn} is

Xk =
N−1∑
n=0

xn W
nk
N

=

N
2
−1∑

r=0

x2r W
(2r)k
N +

N
2
−1∑

r=0

x2r+1 W
(2r+1)k
N

=

N
2
−1∑

r=0

gr W
(2r)k
N + W k

N

N
2
−1∑

r=0

hr W
(2r)k
N

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 11 / 30



The Decimation in Time (DIT) Algorithm

But,

W 2rk
N = e−j 2π

N
(2rk) = e

−j 2π
N/2

(rk)
= W rk

N/2

and hence

Xk =

N
2
−1∑

r=0

gr W
rk
N/2 + W k

N

N
2
−1∑

r=0

hr W
rk
N/2

= Gk + W k
NHk k = 0, 1, . . . ,N − 1

{Gk} and {Hk} are N
2 point DFTs

The overhead for combining the two N
2 point DFTs is the

multiplicative factor W k
N for k = 0, 1, . . . ,N − 1

W k
N is called “twiddle factor”

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 12 / 30



The Decimation in Time (DIT) Algorithm

The N/2 point DFTs {Gk} and {Hk} are periodic with period
N/2

Gk+ N
2

= Gk

Hk+ N
2

= Hk

W
k+N

2
N = −W k

N

Hence, if Xk = Gk + W k
NHk , then Xk+N

2
= Gk −W k

NHk

W k
NHk needs to be computed only once for k = 0 to N

2 − 1

Thus, the multiplication overhead due to the twiddle factors is
only N

2

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 13 / 30



Butterfly Diagram

W
k

N

−W k
N

Gk

Hk

Xk

Xk+ N
2

Xk = Gk + W k
NHk

Xk+N
2

= Gk+N
2

+ W
k+N

2
N Hk+N

2

= Gk −W k
NHk

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 14 / 30



The Decimation in Time (DIT) Algorithm

Figure 9.4 Flowgraph of Decimation in Time algorithm for N = 8 (Oppenheim and Schafer, Discrete-Time Signal
Processing, 3rd edition, Pearson Education, 2010, p. 726)

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 15 / 30



“Divide and Conquer” Results in Savings!

For N = 8, the straightforward approach requires,
approximately, 64 multiplications

The “Divide and Conquer” approach, after the first stage,
requires 32 + 4 = 36 multiplications

Thus, this approach clearly reduces the number of additions
and multiplications required

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 16 / 30



Reusing the “Divide and Conquer” Strategy

The same idea can be applied for calculating the N
2 point

DFT of the sequences {gr} and {hr}
Computational savings can be obtained by dividing {gr} and
{hr} into their odd- and even-indexed halves

This idea can be applied recursively log2 N times if N is a
power of 2

Such algorithms are called radix 2 algorithms

If N = 2γ , then the final stage sequences are all of length 2

For a 2-point sequence {p0, p1}, the DFT coefficients are

P0 = p0 + p1 P1 = p0 − p1

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 17 / 30



DIT Flowgraph for N = 8

Figure 9.11 Flowgraph of Decimation in Time algorithm for N = 8 (Oppenheim and Schafer, Discrete-Time Signal
Processing, 3rd edition, Pearson Education, 2010, p. 730)

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 18 / 30



Overall Operation Count

The direct method requires N2 multiplications

After the first split, N2 −→ 2
(
N
2

)2
+ N

2
N
2 is due to the twiddle factors

After the second split,
(
N
2

)2 −→ 2
(
N
4

)2
+ N

4

Hence,

N2 −→ 2
(
N
2

)2
+

N

2︸︷︷︸
first stage

−→ 4
(
N
4

)2
+

N

2
+

N

2︸ ︷︷ ︸
second stage

Generalizing, if there are log2 N stages, the number of

multiplications needed will be, approximately,
N

2
log2 N

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 19 / 30



Overall Operation Count

If W
k+N

2
N = −W k

N is not considered, the overhead count will
be N and not N

2

In this case,

N2 −→ 2
(
N
2

)2
+ N︸︷︷︸

first stage

−→ 4
(
N
4

)2
+ N + N︸ ︷︷ ︸

second stage

Hence the overall multiplication count will be N log2 N

For N = 1024

N2 = 1, 048, 576 N log2 N = 10, 240

Savings of two orders of magnitude!

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 20 / 30



Input Sequence Order

Recall that, for N = 8, the first split requires the data to be
arranged as follows:
x0, x2, x4, x6, x1, x3, x5, x7

In the second and final split, the data appear in the following
order:
x0, x4, x2, x6, x1, x5, x3, x7

The final order is said to be in “bit reversed” form:

Original Binary Form Reversed Form Final

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 21 / 30



An Algorithm For Sequence Reversal

Consider the card sequence 7, 8, 9, 10, J, Q, K, A

First, reverse pairwise:

8, 7, 10, 9, Q, J, A, K

Then swap the adjacent pairs:

10, 9, 8, 7, A, K, Q, J

Finally, swap the two groups of 4 (each group is half the
original size):

A, K, Q, J, 10, 9, 8, 7 Done!

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 22 / 30



How To Use It For Bit Reversal

The first step of swapping of bits pairwise can be done with
bitwise AND/OR and bit shift operators

Pick out the even and odd bits by using masks

ABCDEFGH & 01010101 = 0B0D0F0H

ABCDEFGH & 10101010 = A0C0E0G0

Left shift the first result and right shift the second result

B0D0F0H0

0A0C0E0G

Bitwise OR the above results

B0D0F0H0 ⊕ 0A0C0E0G = BADCFEHG

Pairwise bit swapping accomplished!

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 23 / 30



C Code For Bit Reversal

unsigned reverse_bits(unsigned input)

{

//works on 32-bit machine

input = (input & 0x55555555) << 1 | (input & 0xAAAAAAAA) >> 1;

input = (input & 0x33333333) << 2 | (input & 0xCCCCCCCC) >> 2;

input = (input & 0x0F0F0F0F) << 4 | (input & 0xF0F0F0F0) >> 4;

input = (input & 0x00FF00FF) << 8 | (input & 0xFF00FF00) >> 8;

input = (input & 0x0000FFFF) << 16 | (input & 0xFFFF0000) >> 16;

return input;

}

Bit reversal for the entire array can take a large overhead if
performed inefficiently

There are several efficient algorithms for sorting an array in
bit-reversed order

Bit reversal on uniprocessors by Alan H. Karp, SIAM Review,
Vol. 38, March 1996, pp. 1–26

http://www-graphics.stanford.edu/~seander/

bithacks.html#BitReverseTable

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 24 / 30

http://www-graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
http://www-graphics.stanford.edu/~seander/bithacks.html#BitReverseTable


In-Place Computation

Notation:

First stage: X
(0)
k = xk

Last stage: X
(log2 N)
k = Xk

For the m-th stage butterfly

Input: X
(m−1)
p , X

(m−1)
q

Output: X
(m)
p , X

(m)
q

The corresponding equations are

X
(m)
p = X

(m−1)
p + W r

N X
(m−1)
q

X
(m)
q = X

(m−1)
p −W r

N X
(m−1)
q

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 25 / 30



In-Place Computation

W
r

N

X
(m−1)
p

X
(m−1)
q

X
(m)
p

X
(m)
q

−W r
N

X
(m−1)
p and X

(m−1)
q are needed for computing X

(m)
p and X

(m)
q

They are not needed for any other pair

Hence

X
(m)
p ←− X

(m−1)
p

X
(m)
q ←− X

(m−1)
q

This is called “in-place computation”

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 26 / 30



In-Place Computation

x0 and x4 are not needed once that butterfly is computed

Hence they can be overwritten with the results of the
butterfly computation

Same is true for other pairs also

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 27 / 30



The Decimation in Frequency (DIF) Algorithm

Another method of splitting the input sequence into half is as
follows:
x0, x1, x2, x3, x4, x5, x6, x7

Similar savings are obtained in this case also

The output Xk will now appear in bit reversed order

This method is called as the Decimation in Frequency
algorithm

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 28 / 30



DIF Flowgraph for N = 8

Figure 9.22 Flowgraph of Decimation in Frequency algorithm for N = 8 (Oppenheim and Schafer, Discrete-Time
Signal Processing, 3rd edition, Pearson Education, 2010, p. 740)

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 29 / 30



Prime Factor Algorithms

When N is not a power of 2 but is a composite number, it can
be expressed in terms of its prime factors

Example: N = 6 = 3× 2

We can now split the given sequence into 3 segments of 2
samples each

x0, x3, x1, x4, x2, x5

Three 2-point DFTs are computed and combined to get the
final DFT

Significant computational savings is obtained, as before

Efficient algorithms exist even when N is prime!

http://en.wikipedia.org/wiki/Rader’s_FFT_algorithm

C.S. Ramalingam (EE Dept., IIT Madras) Intro to FFT 30 / 30

http://en.wikipedia.org/wiki/Rader's_FFT_algorithm

