Convolution

• The familiar one:

$$y[n] = \sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k]$$

- ullet Leave the first signal $x_1[k]$ unchanged
- For $x_2[k]$:
 - Flip the signal: k becomes -k, giving $x_2[-k]$
 - Shift the *flipped* signal to the *right* by *n* samples: k becomes k-n $x_2[-k] \to x_2[-(k-n)] = x_2[n-k]$
- Carry out sample-by-sample multiplication and sum the resulting sequence to get the output at time index n, i.e. y[n]

What happens to periodic signals?

• Suppose both signals are periodic

$$x_1[n+N] = x_1[n]$$

$$x_2[n+N] = x_2[n]$$

Then $x_1[k]$ $x_2[n_0 - k]$ will also be periodic (with period N)

ullet For each value of n_0 we get a different periodic signal (periodicity is N in all cases)

• |y[n]| will be either 0 or ∞

Circular Convolution

$$y[n] \stackrel{?}{=} \sum_{k=0}^{N-1} \tilde{x}_1[k] \ \tilde{x}_2[n-k]$$

- y[n] is periodic with period N
- ullet n-k can be replaced by $\langle n-k
 angle_N$ ("n-k mod N")
- "Circular" Convolution: $\tilde{y}[n] = \tilde{x}_1[n] \circledast \tilde{x}_2[n]$

$$\tilde{y}[n] \stackrel{\text{def}}{=} \sum_{k=0}^{N-1} \tilde{x}_1[k] \ \tilde{x}_2[\langle n-k \rangle_N] \qquad n = 0, 1, \dots, N-1$$

Examples

Relationship Between Linear and Circular Convolution

• If $x_1[n]$ has length P and $x_2[n]$ has length Q, then $x_1[n] * x_2[n]$ is P+Q-1 long (e.g., 6+4-1=9)

• $N \ge \max(P,Q)$. In general

$$\tilde{x}_1[n] \circledast \tilde{x}_2[n] \neq x_1[n] * x_2[n]$$
 $n = 0, 1, ..., N-1$

• Circular convolution can be thought of as repeating the result of linear convolution every N samples and adding the results (over one period)

Example (cont'd)

• But if $N \ge P + Q - 1$

$$\tilde{x}_1[n] \circledast \tilde{x}_2[n] = x_1[n] * x_2[n]$$
 $n = 0, 1, ..., N-1$

$$n = 0, 1, \dots, N-1$$

Linear Convolution via Circular Convolution

ullet If $N\geq 9$ one period of circular convolution will be equal to linear convolution.

Convolution Using the DFT

A very efficient algorithm, called the Fast Fourier Transform (FFT),
 exists for computing the DFT

• Since $x_1[n] \circledast x_2[n] \longleftrightarrow X_1[k] \ X_2[k]$, it is more efficient to compute circular convolution using the FFT as follows:

$$y[n] = DFT^{-1} (X_1[k] X_2[k])$$