GSM Network Architecture, Channelisation, Signalling and Call Processing

Dr Bhaskar Ramamurthi Professor Department of Electrical Engineering IIT Madras

Call Routing in Wireline Network

- location of exchange port corresponding to each number fixed
 - ⇒ incoming calls to a number have to be routed to a particular exchange
- routing based on number analysis by originating exchange and intermediate exchanges

 \Longrightarrow call routed hop by hop

Call Routing To and From Mobile Network

- Location of mobile telephone not fixed
 - tracked by mobile network (MN)
 - MN must accept incoming calls at one (or more) fixed exchanges (called **gateway**)
 - \implies routing of call to mobile handled by MN
 - subequent routing due to movement of mobile handled entirely by MN
 handovers
- all calls to mobiles with a particular prefix routed to one interconnect point

STD Code A

STD Code B

• outgoing calls can be routed to Interconnect Point nearest the called subscriber

GSM Subsystem Functions

• MS: voice, short messages, terminal adapter for fax/modem

- Subscriber Identity Module is the subscriber's personality

└───> handset is "faceless"

• BTS: radio endpoint

– may, or may not, have 13/5.6 kbps ← 64 kbps transcoders

 \implies transcoders may be at BSC or MSC

• BSC: controls one or more BTSs

- channel assignment, handover, power control

• MSC: controls BSCs, interface to PSTN, databases

Dr Bhaskar Ramamurthi

Multiframe Structure

• 8 time slots per carrier : 576.92 μ s x 8 = 4.615 ms frame duration - slot 0 on one carrier (called **beacon**) is for control

- 156.25 bits/slot

• control slot multiframe = **51** frames

• traffic slot multiframe = **26** frames (120 msec)

• superframe = 26×51 frames (6.12 sec)

hyperframe = 2048 superframes (~ 3.5 hours)

Associated Control Channel (ACCH)

• 114 bits every 120 msec for signalling (in FN 12)

• [184 bits (23 bytes) message + 40 parity bits] x 2 due to convolutional code

 \implies 456 bits \implies 480 msec, or four 26 - multiframes

- Slow ACCH (~ 380 bits/sec)

SACCH is associated with TCH

 \implies useful after TCH assigned to MS

• SACCH multiframes for different time slots are offset

 \implies load balancing at BSC

• for fast signalling (e.g. for handover), use **FACCH**

- steal 57 bits from TCH in 8 slots

 \implies set stealing Flag F to indicate this

Dr Bhaskar Ramamurthi

Simplex Control Channels: Downlink

- in slot 0 of specific beacon carriers (frequencies stored in SIM)
- 51-multiframe : 51 and 26 are mutually prime!

⇒ slots of 51-multiframe will "file past" **idle slot** of 26-multiframe even when TCH is present

 \square MS can tune to control slot during idle slots

-	C	SM : Wireless Course					
Frequency Correction Channel (FCH)							
 slot 0 in frames 0, 10,40 of control multiframe (x 51) are for frequency offset estimation and correction 							
	3	142		3	8.25		
	ΤB	all zeros		ТВ	G		
• all-zero data 🖂 constant frequency							
 when MS is turned on, it can hunt continuously for FCH on beacon all carriers in its SIM list 							
\implies when found, look in slot 0 of next frame for Synchronisation Burst							
• One k	beaco	on per cell					

Broadcast Paging and Access Grant Channels

• Broadcast CHannel

- used for transmitting IDs of network, BTS (I.e., cell), RACH parameters

- Paging CHannel
 - for paging MS during incoming calls
 - paging channel divided into sub-channels (one out of every 'n' PCH slots)

 \implies MS wakes up less often in idle mode

- Access Grant CHannel
 - used to grant access after MS sends its ID on RACH
 - dedicated duplex signalling channel assigned to avoid RACH thereafter for the call

Uplink Simplex Channel: Random Access Channel

- time slot 0 (control slot) of beacon on all frames
- shorter than normal burst : 60 guard bits extra
 - even a burst from distant MS, without timing adjustment for propagation delay, will not overlap into next slot
- first burst from MS to be detected
 - \implies longer training sequence
- 36 bits for encrypted data
- slotted ALOHA random access protocol
 - parameters obtained from BCCH

Dedicated Signalling Channels

• need these when TCH is not (yet) assigned, or, for user service (like messaging) not requiring TCH

- like TCH, but of lower capacity
- Standalone Dedicated Control CHannel obtained by dividing TCH/F into 8 parts
 - a time slot in four contiguous frames (for 23 bytes message), but a gap of 'n' frames before next such occurrence
- SDCCH/8 typically de-allocated if TCH is assigned
 - \implies SACCH becomes available

Combining Channels on Carriers

- Half-rate RACH/H, SDCCH/4 possible
- similarly one-third rate PCH/3 and AGCH/3 possible
 - ⇒ allows traffic, common and dedicated control channels on one carrier

Example : small capacity cell with 1 carrier (also the beacon) slot 0: FCCH, SCH, BCCH, PCH/3, AGCH/3, RACH/H, SDCCH/4 slot 1-7: TCH/F

Example : large capacity cell with 12 carriers (96 slots) slot 0 of beacon: FCCH, SCH, BCCH, PCH, AGCH, RACH slot 2,4,6: BCCH, PCH, AGCH (additional)

5 slots : SDCCH/8 87 slots : TCH/F

Timing Advance

- Propagation delay : ~1µs per 300 m
- MS synchronised to BTS clock as received by MS *d* meters away rightarrow d / 300 µs offset
- Transmission from MS in slot *n* received by BTS *d* / 150 μ s late \Box can exceed guard time of 8.25 bit durations (8 x 3.7 μ s)
- BTS measures delay in reception on RACH
 - 68.5 guard bits available in RACH (~250 μsec)
- BTS informs MS on SACCH about a delay value $0-233 \ \mu sec \equiv 0-35 \ km$ - sent as number of bit periods n [0 - 63] \equiv requires 6 bits to code

Location Area

should a paging message go on PCH channels of all BTSs?
 ⇒ heavy load on PCH

can reduce load if MN knows approximate location of MS

 \Rightarrow concept of Location Area (LA)

• LA is a group of cells

- all cells must belong to same MSC

• MS listers to LA ID from BCCH

 \Rightarrow MS (i.e., SIM) registers itself in the LA with MSC

• LA updation also helps MSC determine if call restrictions apply ; e.g., in case of roaming

Locking to a BTS (i.e., Cell)

• search beacon frequency (ies) for FCH, SCH and BCCH

- list of beacons for a LA stored in SIM (from previous locked state)

- search all frequencies if in new LA when MS is tuned ON

• periodically lock to beacons of neighbouring cells also, i.e., listen to FCH, SCH, BCCH

- estimate cell quality parameter
- based on received power level, and some parameters on BCCH related to max Tx power of BTS, etc
- if better cell found in same LA, lock to new cell
- if sufficiently better (with "handicap") cell found in another LA, lock to it
 ⇒ perform LA update

GSM Signalling Protocol Layers

Data Link Layer Protocols

- All protocols are HDLC like
- LAPD : as in ISDN D-channel link layer
 - 260 byte payload
- LAPm : GSM physical layer provides framing
 - \implies no need for framing, bit stuffing, etc.
 - 23 byte packets
- MTP : as in SS7
 - 272 byte payload

Signalling

- MS-BSC: radio resource management
 - channel assignment, timing advance, power control, handover (MS-BTS only for handover)
- MS-MSC: call management
- BSC-MSC: handover co-ordination
- MSC-HLR + Auc: interrogation of MS location, authentication
- MS-VLR: LA update

Circuit-Switched User Data

- for user data between Terminal Adapter of MS and Inter Working Unit of MSC
- Radio Link Protocol provides for ARQ between TA and IWU
- uses the framing provided by GSM physical layer to reduce overhead
- frame size is 240 hits
 - 200 bits of user data

Radio Resource Management

- paging, access request and access grant
 - access always initiated by MS
- allocation and teardown of dedicated signalling and traffic channels
 - dynamic re-configuration of channel pool
- handover management
 - channel quality and adjacent cell measurements by MS
 - co-ordination with MSC
- ciphering/encryption control
 - access initiation always in clear mode
 - transition to encrypted mode occurs later
- orchestrated by BSC
 - MSC involved only in handover, due to traffic considerations

Handover Management

- handovers can be due to
 - movement out of cell, i.e., *rescue*, even call break and reestablishment can occur
 - reduction of interference , i.e., *confinement*, or good civic behaviour
 - traffic congestion in a cell
- *downlink* measurements by MS on neighbouring cell beacons reported to BSC
 - reports made 1-2 times per second
- BTS makes measurement of MS *uplink* transmission
- MSC + BSC decide handover based on measurements and traffic levels
 - cells involved may be managed by same BSC, different BSCs, even different MSCs.
- MS pre-synchronised to neighbouring cells by listening to their SCH
- MS sent handover command with BSIC channel ID, and other parameters (power level, etc)

Mobility Management

- Location area updation and paging control
- HLR contains user registration information
- VLR knows LA of each MS
 - VLR obtains subscriber information from HLR
- incoming call to MS always involve a query to HLR
- International Mobile Subscriber Identity: a world-wide unique ID r
 - MS roaming into new GSM MN provides IMSI to visited MSC/VLR
 - query sent to home HLR (whose SS7 address is known, given IMSI)
- Authentication and Encryption involve keys stored in SIM
 - new key computed each time and stored
 - Temporary MSI assigned by VLR in lieu of IMSI

minimises transmission of IMSI in clear mode

Call Management

- manages call establishment and teardown
 - treats MS-MSC (visited) link as fixed link
- Gateway MSC (GMSC) plays central role for incoming calls to GSM MN
- GSM subscriber's directory number part of country's PSTN numbering plan
 - country code+STD code+subscriber number

rightarrow gives SS7 address of GMSC (where HLR is present)

 HLR maps directory number to IMSI and sends query to VLR where MS is registered

 \implies VLR sends routing information of visited MSC

• GMSC establishes incoming call to visited MSC

 \Rightarrow caller pays till GMSC

- \implies GSM subscriber pays for call from GMSC to MS
 - could involve a terrestrial link through PSTN

GSM 2G Services

- circuit-switched services
 - voice: full rate (13 kbps) and half-rate (5.6 kbps)
 - data: fax, modem, X.25.....

 \implies terminal adapter needed at MS, modem/fax/PAD needed at MSC

supplementary services common in PSTN (CLIP, call barring, call waiting,.....)

short messages

- broadcast messages on CBCH
- 2-way paging on SACCH or SDCCH using Short Message Transport
 Protocol between MS and SMC-Service Centre at MSC

References

- 1. GSM: A System for Mobile Communications, M. Mouly, and M-B. Pautet, Palaiseau, 1992
- 2. Principles and Applications of GSM, V. K. Garg and J. E. Wilkes, Prentica-Hall, N. J., 1999
- 3. Wireless Communications: Principles and Practice, T. S. Rappaport, Prentica-Hall, N. J., 1996