EE5390 Homework 1: Due Wednesday 08/02/2012

1. a) Derive the analytical expression for output current in the circuits shown in Figures 1 & 2. b) In each case, determine the sensitivity of output current to supply voltage given the

following parameters: Vdd = 1.3V; $V_{T1,2}$ = 0.3V; k' = 200 μ A/V²; $(W/L)_1$ = $(W/L)_2$ = 25; R_1 =

8kΩ; $R_2 = 4kΩ$; {sensitivity $S = (V_{DD}/I_{OUT})(\partial I_{OUT}/\partial V_{DD})$ }

- 2. Consider the circuit shown in Figure 3. Assume that Q_2 has a saturation current of I_s , while Q₃ and Q₄ have a saturation current of nI₅. Neglect the portion of I₀ flowing through the resistors, and neglect all base currents. Determine the expression for bias current IBIAS in terms of other circuit parameters.
- 3. Consider the circuit shown in Figure 4. Assume the MOSFETs follow the long-channel device equation $I_D = \beta (V_{GS} - V_T)^2$. You are given the following parameters: $I_0 = 1 \text{mA}$; Vdd = 5V; $\beta_2 = 5mA/V^2$; $V_{T1,2} = 1V$; $R_1 = 1k\Omega$; $R_2 = 5k\Omega$; n=3. Determine the values of V_{OUT} , V_X and I_X .
- 4. a) Design an NMOS high-swing cascode current mirror using device parameters from the IBM 0.13 μ m process file supplied to you. The circuit specifications are: $V_{OUT, min} = 0.3V$; $R_{OUT, min} = 100 k\Omega$; $I_{IN} = 1 \mu A$; $I_{OUT} = 100 \mu A$.
 - b) Calculate the output current noise spectral density in A/ $\sqrt{\text{Hz}}$ (neglect flicker noise)
 - c) Simulate the circuit in (a) and compare with your calculations. If you observe significant differences between calculated and simulated results, explain why there is a difference and modify your design to meet the specifications. {final $I_{OUT} = 100\mu A \pm 0.1\%$ }
 - d) Plot R_{OUT} when V_{OUT} is varied from 0.1V to 1.3V. What behaviour do you see and why?
 - e) Plot output current noise spectral density in A/ $\sqrt{\text{Hz}}$ between 100Hz and 100MHz, and compare the value in the white noise region with that from (b). If there is a discrepancy, explain why.

Figure 1 Figure 2

Figure 3 Figure 4