EE5390 Homework 1: Due Wednesday 08/02/2012

- a) Derive the analytical expression for output current in the circuits shown in Figures 1 & 2.
 b) In each case, determine the sensitivity of output current to supply voltage given the following parameters: Vdd = 1.3V; V_{T1,2} = 0.3V; k' = 200µA/V²; (W/L)₁ = (W/L)₂ = 25; R₁ = 8kΩ; R₂ = 4kΩ; {sensitivity S = (V_{DD}/I_{OUT})(∂I_{OUT}/∂V_{DD})}
- 2. Consider the circuit shown in Figure 3. Assume that Q_2 has a saturation current of I_s , while Q_3 and Q_4 have a saturation current of nI_s . Neglect the portion of I_0 flowing through the resistors, and neglect all base currents. Determine the expression for bias current I_{BIAS} in terms of other circuit parameters.
- 3. Consider the circuit shown in Figure 4. Assume the MOSFETs follow the long-channel device equation $I_D = \beta(V_{GS} V_T)^2$. You are given the following parameters: $I_0 = 1$ mA; Vdd = 5V; $\beta_2 = 5$ mA/V²; $V_{T1,2} = 1$ V; $R_1 = 1$ k Ω ; $R_2 = 5$ k Ω ; n=3. Determine the values of V_{OUT} , V_X and I_X .
- 4. a) Design an NMOS high-swing cascode current mirror using device parameters from the IBM 0.13µm process file supplied to you. The circuit specifications are: $V_{OUT, min} = 0.3V$; $R_{OUT, min} = 100k\Omega$; $I_{IN} = 1\mu$ A; $I_{OUT} = 100\mu$ A.
 - b) Calculate the output current noise spectral density in A/ \sqrt{Hz} (neglect flicker noise)

c) Simulate the circuit in (a) and compare with your calculations. If you observe significant differences between calculated and simulated results, explain why there is a difference and modify your design to meet the specifications. {final $I_{OUT} = 100\mu A \pm 0.1\%$ }

d) Plot R_{OUT} when V_{OUT} is varied from 0.1V to 1.3V. What behaviour do you see and why? e) Plot output current noise spectral density in A/ \sqrt{Hz} between 100Hz and 100MHz, and compare the value in the white noise region with that from (b). If there is a discrepancy, explain why.

Figure 3

Figure 4