In all problems below, neglect channel-length modulation, backgate effects and device capacitances, and assume all MOSFETs are in saturation. Use the long-channel device equation $\mathrm{I}=\beta\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}$. Assume the input signal consists of two closely-spaced tones at frequencies $\omega 1$ and $\omega 2$, and equal amplitudes A.

1) Calculate and compare the IIP3 of the circuits shown in fig. 1(a) and (b). Assume $V_{B 1}, V_{B 2}$ and I_{T} are such that bias currents in M_{1} and M_{2} are the same in (a) and (b).

Fig. 1(a) Pseudo-differential amplifier

Fig. 1(b) Differential Amplifier
2) Calculate the IIP3 of the circuits shown in fig 2(a), (b) and (c). To simplify things, express your answer in terms of tank Q , wherever applicable.

Fig. 2(a)

Fig. 2(b)

Fig. 2(c)

