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2. Let c be a codeword of the (n, 1) repetition code and s = 1− 2c be the symbol vector under BPSK
Modulation. Let r = s + z be the received vector over an AWGN channel.
The decoded codeword obtained from a maximum likelihood decoder for a code C is given by

ĉ = arg maxu∈Cf(r|c = u),

where f(r|c = u) is the conditional pdf of the received vector r given that the transmitted codeword
is u. Over an AWGN channel the conditional pdf can be written as

f(r|c = u) =
1

(2πσ2)n/2
exp(−

∑n
i=1(ri − si)2

2
),

since given u the ri are independent. Hence, maximum-likelihood decoding in an AWGN channel
reduces to minimizing the squared Euclidean distance, and can be written as

ĉ = arg minu∈C

n∑
i=1

(ri − si)2.

Since si ∈ ±1 for BPSK modulation, the ML codeword estimate is

ĉ = arg maxu∈C

n∑
i=1

risi.

For the (n, 1) repetiton code C = {c0 = 00 . . . 0, c1 = 11 . . . 1}, the ML rule is

ĉ = arg maxu∈C{r1 + r2 + . . . + rn, r1 + r2 + . . . + rn}

=

{
00 . . . 0 if r1 + r2 + . . . + rn > 0,

11 . . . 1 if r1 + r2 + . . . + rn < 0.

Probablity of Error:

P (error) = P (ĉ = c1|c = c0)P (c = c0) + P (ĉ = c0|c = c1)P (c = c1),

=
1
2
[P (ĉ = c1|c = c0) + P (ĉ = c0|c = c1)],

=
1
2
[P (r1 + r2 + . . . + rn > 0|c = c1) + P (r1 + r2 + . . . + rn < 0|c = c0).

Since ri ∼ N(si, σ
2) are iid random variables,

λ = r1 + r2 + . . . + rn ∼ N(s1 + s2 + . . . + sn, nσ2).

When c0 is transmitted, λ ∼ N(n, nσ2). When c1 is transmitted, λ ∼ N(−n, nσ2). Therefore,

P (error) =
1
2

[
Q

(
n√
nσ

)
+ Q

(
n√
nσ

)]
,

= Q

(√
n

σ

)
,

= Q

(√
2Eb

N0

)
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where Q(x) = 1√
2π

∫∞
x

e−x2/2dx and Eb/N0 = n/(2σ2). Hence, no coding gain is obtained by the
use of repetition codes.

3.

H =

 1 0 0 1 1
0 1 0 0 1
0 0 1 1 0


Let C1 be the (5, 2) code with parity check matrix H. We see that

C = {00000, 01110, 10101, 11011}.

(a) Soft ML Decoder: Let the received word over an AWGN Channel under BPSK Modulation
be r = s + n, where s = 1− 2c and ni ∼ N(0, σ2). The soft ML decoding rule for the code C1

is

ĉ =


00000, r1 + r2 + r3 + r4 + r5 is max,

01110, r1 − r2 − r3 − r4 + r5 is max,

10101, −r1 + r2 − r3 + r4 − r5 is max,

11011, −r1 − r2 + r3 − r4 − r5 is max.

(b) ML hard-decision Decoder: This is a syndrome decoder. The syndrome s = rHT identifies
the estimated error vector (coset leader) ê, which is added to the received vector r to get
ĉ = r + ê. The syndrome table for C1 is as follows:

Syndrome, s Coset leader e
000 00000
001 00100
010 01000
011 01100
100 10000
101 00010
110 00001
111 00101

Table 1: Syndrome Table for the (5, 2) code C1.

4.

G =

 1 0 0 1 1
0 1 0 0 1
0 0 1 1 0


Let C2 be the (5, 3) with generator matrix,G. We see that

C2 = {00000, 00110, 01001, 01111, 10011, 10101, 11010, 11100}.

(a) Soft ML Decoder:

ĉ =



00000, r1 + r2 + r3 + r4 + r5 is max,

00110, r1 + r2 − r3 − r4 + r5 is max,

01001, r1 − r2 + r3 + r4 − r5 is max,

01111, r1 − r2 − r3 − r4 − r5 is max,

10011, r1 − r2 − r3 + r4 + r5 is max,

10101, −r1 + r2 − r3 + r4 − r5 is max,

11010, −r1 − r2 + r3 − r4 + r5 is max,

11100, −r1 − r2 − r3 + r4 + r5 is max,
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Syndrome, s Coset leader e
00 00000
01 01000 (or) 00010
10 10000 (or) 00001
11 00100

Table 2: Syndrome Table for the (5, 3) code C2.

(b) ML Hard-decision Decoder: See Table 2.

6. Let Di be the correlation metric for codeword ci i.e.

D1 = r1 + r2 + r3 + r4

D2 = r1 − r2 + r3 − r4

D3 = −r1 + r2 − r3 + r4

D4 = −r1 − r2 − r3 − r4

Decide in favour of 0000 if

D1 > D2 and D1 > D3 and D1 > D4,

or r2 + r4 > 0 and r1 + r3 > 0 and r1 + r2 + r3 + r4 > 0.

Decide in favour of 0101 if

D2 > D1 and D2 > D4 and D2 > D3,

or r2 + r4 < 0 and r1 + r3 > 0 and r1 + r3 > r2 + r4.

Decide in favour of 1010 if

D3 > D4 and D3 > D1 and D3 > D2,

or r2 + r4 > 0 and r1 + r3 < 0 and r2 + r4 > r1 + r3.

Decide in favour of 1111 if

D4 > D3 and D4 > D2 and D4 > D1,

or r2 + r4 < 0 and r1 + r3 < 0 and r1 + r2 + r3 + r4 < 0.

Since the third condition in each case above is redundant, we can rewrite the ML decision rule as
follows:

ĉ =


0000, if r1 + r3 > 0 and r2 + r4 > 0
0101, if r1 + r3 > 0 and r2 + r4 < 0
1010, if r1 + r3 < 0 and r2 + r4 > 0
1111, if r1 + r3 < 0 and r2 + r4 < 0

Therefore, the necessary number of real-number additions is Na = 2 and the number of real
comparisions is Nc = 2.

7. (a) A non-systematic encoder is shown in Fig. 1

G(D) = [1 + D3 1 + D + D2 + D3]
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Figure 1: Non- Systematic Encoder.
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Figure 2: One Stage of Trellis for 1/2 code

(b) One stage of the complete trellis is shown in Fig. 2.

8. (a) The transfer function matrix is seen to be

G(D) = [1 + D3 1 + D + D2 + D3].

The relations between the input sequence {un} and the output sequences {v(1)
n } and {v(2)

n }
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are as follows:

v(1)
n = u(1)

n + u
(1)
n−3,

v(2)
n = u(1)

n + u
(1)
n−1 + u

(1)
n−2 + u

(1)
n−3.

(b) The trellis is the same as that of the previous problem. See Fig. 2.
(c) Encoding of (11111 . . . . . . ):

v(1)
n = 111000000 . . . . . .

v(2)
n = 101000000 . . . . . .

This encoder is known as a catastrophic encoder, since it produces a finite-weight codeword
for an infinite-weight input.

9. (a) The relations between the input sequence {un} and the output sequences {v(1)
n } and {v(2)

n }
are as follows:

v(1)
n = u(1)

n ,

v(2)
n = u(1)

n + u
(1)
n−1.

The trellis for 4 message bits is shown in Fig. 3.
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Figure 3: Trellis Diagram for 4 message bits with zero termination.

(b) Number of codewords = Number of possible messages = 24 = 16.
(c) Viterbi decoding over a BSC is shown in Fig. 4. The final survivor is shown in red. The ML

decoded message is seen to be 1000.
(d) Viterbi Decoding over AWGN is shown in Fig. 5. The final survivor is shown in red. The

ML decoded message is seen to be 0111.

11. (a) Let α be the primitive element of GF (2m). Parity check matrix of CR is given by

HR =


1 α α2 · · · α(n−1)

1 α2 α4 · · · α2(n−1)

...
...

...
. . .

...
1 α2t α4t · · · α2t(n−1)

 .

Parity check matrix of CB is given by

HR =


1 α α2 · · · α(n−1)

1 α3 α6 · · · α3(n−1)

...
...

...
. . .

...
1 α(2t−1) α2(2t−1) · · · α(2t−1)(n−1)

 .
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Figure 4: Viterbi Decoding over BSC.
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Figure 5: Viterbi Decoding over AWGN.

(b) Given that the codes are transmitted over BSC with transition probability p, the probability
of symbol error ps = 1− (1− p)m. The probability of block error for the RS code CR is given
by

pR = 1−
t∑

i=0

(
n

i

)
pi

s(1− ps)n−i.

The probability of block error for the BCH code CB is given by,

pB = 1−
t∑

i=0

(
n

i

)
pi(1− p)n−i.

12. The given encoder consists of an encoder E1 for the (7, 4) Hamming code followed by an encoder
E2 for (127, 121) RS code over GF (27).

(a) A 4 bit message is converted into a 7-bit codeword by E1. Each 7-bit Hamming codeword
forms a single symbol over GF (27). 121 such symbols form one message vector for E2. Thus,
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we have to start with 4 × 121 = 484 bits at the input of E1 to get a 121-symbol message
vector at the input of E2. The length of the final coded vector is 7 × 127 = 889 bits. Thus,
dimension and length of the overall bianry code are, k = 484 and n = 889.

(b) The given decoder consists of a bounded distance decoder (BDD) for the RS code, followed
by the syndrome decoder (SD) for the Hamming code. We assume that if the BDD for the
RS code fails, it hands over the received word as such to the SD. The BDD fails when there
are more than 3 symbol errors. We need to find the bit error correcting capability tb of the
entire decoder. It is clear that tb ≥ 3 since the BDD can correct 3 symbol errors.
Let us check if 4-bit errors are correctable by the concatenated decoder. The only case for
which the BDD fails due to a 4-bit error is when the 4-bit error corresponds to a 4-symbol
error i.e. a single bit error in 4-symbols. In such a case, the BDD hands over the received
word to the Hamming decoder. The Hamming decoder decodes each symbol successfully, as it
can correct a single bit error per symbol. Since the 4 erroneous symbols are corrected by the
Hamming decoder, all 4-bit errors can be corrected by the combined decoder. All 5-bit errors
cannot be corrected, since a 5-bit error can correspond to a 4-symbol error with a single bit
error in 3 symbols and a double bit error in 1 symbol. In this case both BDD and SD fail to
correct the error.
Thus, the error correcting capability of the entire decoder is tb = 4.

13. C is a RS code of length n = 2m − 1 over GF (2m).

(a) Let t be the error-correcting capability of the code. The burst-error-correcting capability is
(t− 1)m + 1.

(b) The burst-error-correcting capability after interleaving is (t − 1)mM + (M − 1)m + 1. By
interleaving M codewords, the burst-error-correcting capability increases by almost M times.

14. The 2-error correcting (7, 3) RS code over GF (8) is shortened to a (5, 1) code over GF (8). Let α
be the primitive element of GF (8). The generator polynomial of the (7, 3) RS code is given by,

g(x) = (x + α)(x + α2)(x + α3)(x + α4)
= x4 + α3x3 + x2 + αx + α3.

The generator matrix for the (7, 3) RS code can be obtained from g(x) as follows:

Ĝ =

 1 α3 1 α α3 0 0
0 1 α3 1 α α3 0
0 0 1 α3 1 α α3

 .

Row transfromation can be done on G to obtain the systematic generator matrix as follows:

G =

 1 0 0 α4 1 α4 α5

0 1 0 α2 1 α6 α6

0 0 1 α3 1 α α3

 .

The parity check matrix is given by

H =


α4 α2 α3 1 0 0 0
1 1 1 0 1 0 0
α4 α6 α 0 0 1 0
α5 α6 α3 0 0 0 1

 .

(a) Shortening is deleting a coordinate in the message vector, which also causes deletion of the
corresponding coordinate in the codeword. In other words, the shortened code consists of the
codewords which have 0 in a particular coordinate (the coordinate that is deleted). Shortening
by one symbol causes deletion of a particular row and column in the generator matrix, or
equivalently, deletion of a column in the parity check matrix.
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Let the (7, 3) RS code be shortened to a (5, 1) code by deleting the first 2 co-ordinates. The
generator matrix of the shortened code is got by deleting the first 2 rows and columns of G
as shown below.

Gs =
(

1 α3 1 α α3
)
.

The parity check matrix of the shortened code is given by

Hs =


α3 1 0 0 0
1 0 1 0 0
α 0 0 1 0
α3 0 0 0 1

 .

(b) Minimum distance of the shortened code is 5 (can be deduced from Gs).

(c) Block length and dimension of the binary expanded version of the shortened code are given
by ns = 3× 5 = 15 and k = 3× 1 = 3. The (15, 7) binary BCH code is a higher rate 2-error
correcting code.

15. The 2-error correcting (7, 3) RS code over GF (8) is punctured to a (5, 3) code over GF (8).

(a) Refer previous Question.

(b) Puncturing results in deletion of a row and column in the parity check matrix (depending
on which parity symbol is deleted). Equivalently, it results in the deletion of a column in
the generator matrix. Suppose we puncture the last 2 parity symbols of the (7, 3) code. The
resulting parity check matrix is given by (refer to matrix H in the previous question),

Hp =
(

α4 α2 α3 1 0
1 1 1 0 1

)
.

The generator matrix of the punctured code is given by

Gp =

 1 0 0 α4 1
0 1 0 α2 1
0 0 1 α3 1

 .

(c) The punctured code is 1-error correcting since the minimum distance of the punctured code
is 3.

8


