
Introduction to
Distributed Arithmetic

K. Sridharan, IIT Madras

Distributed Arithmetic (DA)

An efficient technique for calculation of inner
product or multiply and accumulate (MAC)
The MAC operation is common in Digital Signal
Processing Algorithms

What is the direct method of implementing
inner products or MAC ?

The direct method involves using dedicated
multipliers
Multipliers are fast but they consume considerable
hardware

An Illustration of MAC Operation
The following expression represents a multiply and
accumulate operation

A numerical example

KK xAxAxAy ×++×+×= L2211

∑
=

=
K

k
kk xAyei

1
..

2069154117169001344
6723)22(7820454232

=+−+=
×+−×+×+×=

y
y

[] [])4(67,22,20,4223,45,42,32 =−== KxA

How does distributed arithmetic work?
Distributed Arithmetic (DA) is a technique that is bit-
serial in nature. It can therefore appear to be slow
It turns out that when the number of elements in a
vector is nearly the same as the wordsize, DA is
quite fast
DA `replaces’ the explicit multiplications by ROM
look-ups an efficient technique to implement on
Field Programmable Gate Arrays (FPGAs)

What does DA achieve ?

In DA, multiplications are reordered and mixed such that the
arithmetic becomes “distributed” through the structure rather
than being “lumped”
Area savings from using DA can be up to 80% in DSP
hardware designs
While distributed arithmetic technique itself has been around
for more than 30 years (Peled and Liu, 1974), interest in this
has been revived by the use of Field Programmable Gate
Arrays (FPGAs) for DSP
When DA is implemented in FPGAs, one can take advantage
of memory in FPGAs to implement the MAC operation

The Formulation for DA
Consider

a. Let xk be an N-bit scaled two’s complement number. In
other words,

| xk | < 1
xk : {bk0, bk1, bk2……, bk(N-1) }

where bk0 is the sign bit
b. We can express xk as
c. Substituting (2) in (1),

∑
=

=
K

k
kk xAy

1

∑
−

=

−+−=
1

1
0 2

N

n

n
knkk bbx

…(1)

…(2)

∑ ∑
=

−

=

−
⎥
⎦

⎤
⎢
⎣

⎡
+−=

K

k

N

n

n
knkk bbAy

1

1

1
0 2

() ()∑∑∑
=

−

=

−

=

•+•−=
K

k

N

n

n
knk

K

k
kk bAAby

1

1

11
0 2 …(3)

Continuing the DA formulation …

[]
() () ()() ()[]
() () ()() ()[]

() () ()() ()[]1
1

2
2

1
1

1
212

2
222

1
221

1
111

2
112

1
111

0220110

222

222

222

−−
−

−−

−−
−

−−

−−
−

−−

•++•+•+

•++•+•+

•++•+•+

•++•+•−=

N
KNKKKKK

N
N

N
N

KK

AbAbAb

AbAbAb

AbAbAb

AbAbAby

L

M

L

L

L

() ()∑ ∑∑
=

−

=

−

=
⎥
⎦

⎤
⎢
⎣

⎡
•+•−=

K

k

N

n

n
kkn

K

k
kk AbAby

1

1

11
0 2

() () () ()[]∑∑
=

−−
−

−−

=

•++•+•+•−=
K

k

N
Nkkkkkk

K

k
kk bAbAbAAby

1

)1(
)1(

2
2

1
1

1
0 222 L

…(3)

Expanding this part

Further simplification leads to
[]
() () ()() ()[]
() () ()() ()[]

() () ()() ()[]1
1

2
2

1
1

1
212

2
222

1
221

1
111

2
112

1
111

0220110

222

222

222

−−
−

−−

−−
−

−−

−−
−

−−

•++•+•+

•++•+•+

•++•+•+

•++•+•−=

N
KNKKKKK

N
N

N
N

KK

AbAbAb

AbAbAb

AbAbAb

AbAbAby

L

M

L

L

L

[]
() () ()[]
() () ()[]

()() ()() ()()[] ()1
1212111

2
2222112

1
1221111

0220110

2

2

2

−−
−−−

−

−

•++•+•+

•++•+•+

•++•+•+

•++•+•−=

N
KNKNN

KK

KK

KK

AbAbAb

AbAbAb

AbAbAb

AbAbAby

L

M

L

L

L

The rewrite showing interchange of sum ..
[]
() () ()[]
() () ()[]

()() ()() ()()[] ()1
1212111

2
2222112

1
1221111

0220110

2

2

2

−−
−−−

−

−

•++•+•+

•++•+•+

•++•+•+

•++•+•−=

N
KNKNN

KK

KK

KK

AbAbAb

AbAbAb

AbAbAb

AbAbAby

L

M

L

L

L

[]∑∑
−

=

−

=

•++•+•+•−=
1

1
221

1
0 2)(

N

n

n
KKnnkn

K

k
kk AbAbAbAby L

∑ ∑∑
−

=

−

==
⎥
⎦

⎤
⎢
⎣

⎡
•+•−=

1

1 11
0 2)(

N

n

n
K

k
knk

K

k
kk bAbAy …(4)

How is the hardware realization ?
Consider the equation (4) rewritten as:

has only 2K possible values

has only 2K possible values

With the sign bit as an input,
we can store it in a ROM of size=2*2K

∑ ∑∑
−

= =

−

=

−+⎥
⎦

⎤
⎢
⎣

⎡
=

1

1 1
0

1

)(2
N

n

K

k
kk

n
K

k
knk bAbAy

⎥
⎦

⎤
⎢
⎣

⎡∑
=

K

k
knkbA

1

∑
=

−
K

k
kk bA

1
0)(

Example
Let number of taps K be 4
The fixed coefficients are A1 =0.72, A2= -0.3, A3 =
0.95, A4 = 0.11

We need 2K = 24 = 16-words ROM

∑ ∑∑
−

= =

−

=

−+⎥
⎦

⎤
⎢
⎣

⎡
=

1

1 1
0

1

)(2
N

n

K

k
kk

n
K

k
knk bAbAy …(4)

ROM: Address and Contents
b1n b2n b3n b4n Contents
0 0 0 0 0
0 0 0 1 A4=0.11
0 0 1 0 A3=0.95
0 0 1 1 A3+ A4=1.06
0 1 0 0 A2=-0.30
0 1 0 1 A2+ A4= -0.19
0 1 1 0 A2+ A3=0.65
0 1 1 1 A2+ A3 + A4=0.75
1 0 0 0 A1=0.72
1 0 0 1 A1+ A4=0.83
1 0 1 0 A1+ A3=1.67
1 0 1 1 A1+ A3 + A4=1.78
1 1 0 0 A1+ A2=0.42
1 1 0 1 A1+ A2 + A4=0.53
1 1 1 0 A1+ A2 + A3=1.37
1 1 1 1 A1+ A2 + A3 + A4=1.48

nnnn
k

knk bAbAbAbAbA 44332211

4

1
+++=⎥

⎦

⎤
⎢
⎣

⎡∑
=

Plus and Minus Points
The architecture has accomplished MAC without an
explicit multiplier
The size of ROM, however,grows exponentially with
each added input address line
For each element in a vector, we have an address
line. So we’ll have K address lines
If K is 16, this implies 216 (i.e., 64K) of ROM

Offset binary coding to reduce ROM size

)]([
2
1

kkk xxx −−=

∑
−

=

−−− ++−=−
1

1

)1(
0 22

N

n

Nn
knkk bbx

∑
−

=

−+−=
1

1
0 2

N

n

n
knkk bbx

2‘s-complement

() () ⎥
⎦

⎤
⎢
⎣

⎡
−−+−−= ∑

−

=

−−−
1

1

)1(
00 22

2
1 N

n

Nn
knknkkk bbbbx

Rewriting xk differently, we have

Define: Offset Code

Finally

() () ⎥
⎦

⎤
⎢
⎣

⎡ −−+−−= ∑
−

=

−−−
1

1

)1(
00 22

2
1 N

n

Nn
knknkkk bbbbx

⎥
⎦

⎤
⎢
⎣

⎡ −= ∑
−

=

−−−
1

0

)1(22
2
1 N

n

Nn
knk cx

{ }1,1{
0,
0,

)(
−∈

=
≠

−−
−

= kn
knkn

knkn
kn cwhere

n
n

bb
bb

c

Using the new xk we have

Substitute the new xk in ∑
=

=
K

k
kk xAy

1

∑ ∑
=

−−−
−

=
⎥
⎦

⎤
⎢
⎣

⎡
−=

K

k

Nn
kn

N

n
k cAy

1

)1(
1

0
22

2
1

⎥
⎦

⎤
⎢
⎣

⎡ −= ∑
−

=

−−−
1

0

)1(22
2
1 N

n

Nn
knk cx

)1(

11

1

0
2

2
12

2
1 −−

==

−

=

− ∑∑∑ −= N
K

k
k

K

k

N

n

n
knk AcAy

)1(

1

1

0 1
2

2
12

2
1 −−

=

−

= =

− ∑∑ ∑ −= N
K

k
k

N

n

K

k

n
knk AcAy …(9)

The New Formulation in Offset Code
)1(

1

1

0 1
2

2
12

2
1 −−

=

−

= =

− ∑∑ ∑ −= N
K

k
k

N

n

K

k

n
knk AcAy

and() ∑
=

=
K

k
knkKnnn cAcccQ

1
21 2

1
L ∑

=

−=
K

k
kAQ

12
1)0(

If we let

Constant

() ()∑
−

=

−−− +=
1

0

)1(
21 022

N

n

Nn
Knnn QcccQy L

The Gain: have reduced storage to 8 rows
b1n b2n b3n b4n c1n c2n c3n c4n Contents
0 0 0 0

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

-1/2 (A1+ A2 + A3 + A4) = -0.74
0 0 0

-1-1-1-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1

-1/2 (A1+ A2 + A3 - A4) = - 0.63
0 0 1

1

1

1

-1

1

-1
-1
-1
1
1
1
1

-1
-1
-1

-1/2 (A1+ A2 - A3 + A4) = 0.21
0 0 1

-1
1

-1

1
1

1
1

-1
-1
1
1

-1
-1
1
1

-1/2 (A1+ A2 - A3 - A4) = 0.32
0 1 0

-1
-1

1

1
-1
1

-1
1

-1
1

-1
1

-1

1
1

-1/2 (A1 - A2 + A3 + A4) = -1.04
0 1 0 -1/2 (A1 - A2 + A3 - A4) = - 0.93
0 1 1 -1/2 (A1 - A2 - A3 + A4) = - 0.09
0 1 1 -1/2 (A1 - A2 - A3 - A4) = 0.02
1 0 0 -1/2 (-A1+ A2 + A3 + A4) = -0.02
1 0 0 -1/2 (-A1+ A2 + A3 - A4) = 0.09
1 0 1 -1/2 (-A1+ A2 - A3 + A4) = 0.93
1 0 1 -1/2 (-A1+ A2 - A3 - A4) = 1.04
1 1 0

1

1
-1
1

-1/2 (-A1 - A2 + A3 + A4) = - 0.32
1 1 0 -1/2 (-A1 - A2 + A3 - A4) = - 0.21
1 1 1 -1/2 (-A1 - A2 - A3 + A4) = 0.63
1 1 1 -1/2 (-A1 - A2 - A3 - A4) = 0.74

Inverse sym
m

etry

DA Hardware with Offset Binary Coding

x1 selects
between the
two symmetric
halves

Ts indicates
when the sign
bit arrives

How to reduce ROM size further ?

One approach to reduce the ROM size is by
decomposing the ROM

In particular, can divide the N address bits of the
ROM can be divided into (N/K) groups of K bits

So a ROM of size 2N can be divided into N/K
ROMs of size 2K

Will need an adder to add the outputs of these
ROMs and a multi-input accumulator

This is an active area of research .

Comparisons in initial years of DA
Traditional comparisons are with multiplier-based
solutions for problems pertaining to filters
When DA was devised (in the 1970s), the
comparisons given were in terms of number of TTL
ICs required for mechanization of a certain type of
filter
In particular, for an eighth order digital filter
operating at a word rate close to 1 MHz, 72 ICs with
a total power consumption of about 30 W was stated
with the DA approach while 240 ICs with a power
dissipation of 96 W was indicated for a multiplier-
based solution

Current Status: DA vs Mplr on FPGA
A study of computation of Y = aX1 + bX2 + cX3 was
performed with code developed in Verilog. Elements were
chosen to have 8-bit size
A Spartan-XC3S500E based synthesis was carried out in
Xilinx ISE 10.1
When built-in multipliers were used, the resource
consumption was 35 slices and 3 multipliers. The
combinational path delay was 15.17 ns.
For the DA-based solution, 47 slices were used and the max
frequency of operation was 142.572 MHz.
Power consumption (obtained using XPower) for DA-based
approach was slightly less than that for the multiplier-based
solution

References
A. Peled and B. Liu, A new hardware realization of
digital filters, IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. ASSP-22, No.
6, pp. 456-462, Dec. 1974
S. A. White, Applications of distributed arithmetic to
digital signal processing: A tutorial review,” IEEE
ASSP Magazine, July, 1989
URL http://staff.kfupm.edu.sa/ITC/miali/Distributed
Arithmetic.ppt
Xilinx Application Note, The role of distributed
arithmetic in FPGA-based signal processing,
www.xilinx.com/appnotes/theory1.pdf

	Introduction to Distributed ArithmeticK. Sridharan, IIT Madras
	Distributed Arithmetic (DA)
	What is the direct method of implementing inner products or MAC ?
	An Illustration of MAC Operation
	How does distributed arithmetic work?
	What does DA achieve ?
	The Formulation for DA
	Continuing the DA formulation …
	Further simplification leads to
	The rewrite showing interchange of sum ..
	How is the hardware realization ?
	Example
	ROM: Address and Contents
	Plus and Minus Points
	Offset binary coding to reduce ROM size
	Rewriting xk differently, we have
	Using the new xk we have
	The New Formulation in Offset Code
	The Gain: have reduced storage to 8 rows
	DA Hardware with Offset Binary Coding
	How to reduce ROM size further ?
	Comparisons in initial years of DA
	Current Status: DA vs Mplr on FPGA
	References

