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Distributed Arithmetic (DA) 

An efficient technique for calculation of inner 
product or multiply and accumulate (MAC)
The MAC operation is  common in  Digital Signal 
Processing Algorithms



What is the direct method of implementing 
inner products or MAC ?

The direct method involves using dedicated 
multipliers
Multipliers are fast but they consume considerable 
hardware



An Illustration of MAC Operation
The following expression represents a multiply and 
accumulate operation

A numerical example
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How does distributed arithmetic work?
Distributed Arithmetic (DA) is a technique that is bit-
serial in nature. It can therefore appear to be slow
It turns out that when the number of elements in a 
vector is nearly the same as the wordsize, DA is 
quite fast
DA `replaces’ the explicit multiplications by ROM 
look-ups an efficient technique to implement on 
Field Programmable Gate Arrays (FPGAs)



What does DA achieve ?

In DA, multiplications are reordered  and mixed such that the 
arithmetic becomes “distributed” through the structure rather 
than being “lumped”
Area savings from using DA can be up to 80% in DSP 
hardware designs
While distributed arithmetic technique itself has been around 
for more than 30 years (Peled and Liu, 1974), interest in this 
has been revived by the use of Field Programmable Gate 
Arrays (FPGAs) for DSP
When DA is implemented in FPGAs, one can take advantage 
of memory in FPGAs to implement the MAC operation



The Formulation  for DA
Consider 

a. Let xk be an N-bit scaled two’s complement number. In 
other words,

| xk | < 1
xk : {bk0, bk1, bk2……, bk(N-1) }

where bk0  is the sign bit
b. We can express xk as 
c. Substituting (2) in (1),
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Continuing the DA formulation …
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Expanding this part



Further simplification leads to 
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The rewrite showing interchange of sum .. 
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How is the hardware realization ?
Consider the equation (4) rewritten as:

has only 2K possible values

has only 2K possible values

With the sign bit as an input, 
we can store it in a ROM of  size=2*2K  
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Example
Let number of taps K be 4
The fixed coefficients are A1 =0.72, A2= -0.3, A3 = 
0.95,   A4 = 0.11

We need 2K = 24 = 16-words ROM
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ROM: Address and Contents
b1n b2n b3n b4n Contents
0 0 0 0 0
0 0 0 1 A4=0.11
0 0 1 0 A3=0.95
0 0 1 1 A3+ A4=1.06
0 1 0 0 A2=-0.30
0 1 0 1 A2+ A4= -0.19
0 1 1 0 A2+ A3=0.65
0 1 1 1 A2+ A3 + A4=0.75
1 0 0 0 A1=0.72
1 0 0 1 A1+ A4=0.83
1 0 1 0 A1+ A3=1.67
1 0 1 1 A1+ A3 + A4=1.78
1 1 0 0 A1+ A2=0.42
1 1 0 1 A1+ A2 + A4=0.53
1 1 1 0 A1+ A2 + A3=1.37
1 1 1 1 A1+ A2 + A3 + A4=1.48
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Plus and Minus Points
The architecture has accomplished MAC without an 
explicit multiplier
The size of ROM, however,grows exponentially with 
each added input address line
For each element in a vector, we have an address 
line. So we’ll have K address lines 
If K is 16, this implies 216 (i.e., 64K) of  ROM



Offset binary coding to reduce ROM size
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Rewriting xk differently, we have

Define: Offset Code

Finally
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Using the new xk we have

Substitute the new xk in ∑
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The New Formulation in Offset Code
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The Gain: have reduced storage to 8 rows
b1n b2n b3n b4n c1n c2n c3n c4n Contents
0 0 0 0

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

-1/2 (A1+ A2 + A3 + A4) = -0.74
0 0 0

-1-1-1-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1

-1/2 (A1+ A2 + A3 - A4) = - 0.63
0 0 1
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-1/2 (A1 - A2 + A3 + A4) = -1.04
0 1 0 -1/2 (A1 - A2 + A3 - A4) = - 0.93
0 1 1 -1/2 (A1 - A2 - A3 + A4) = - 0.09
0 1 1 -1/2 (A1 - A2 - A3 - A4) = 0.02
1 0 0 -1/2 (-A1+ A2 + A3 + A4) = -0.02
1 0 0 -1/2 (-A1+ A2 + A3 - A4) =  0.09
1 0 1 -1/2 (-A1+ A2 - A3 + A4) = 0.93
1 0 1 -1/2 (-A1+ A2 - A3 - A4) = 1.04
1 1 0

1

1
-1
1

-1/2 (-A1 - A2 + A3 + A4) = - 0.32
1 1 0 -1/2 (-A1 - A2 + A3 - A4) = - 0.21
1 1 1 -1/2 (-A1 - A2 - A3 + A4) = 0.63
1 1 1 -1/2 (-A1 - A2 - A3 - A4) = 0.74
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DA Hardware with Offset Binary Coding

x1 selects 
between the 
two symmetric 
halves

Ts indicates 
when the sign 
bit arrives



How to reduce ROM size further ? 

One approach to reduce the ROM size is by 
decomposing the ROM

In particular, can divide the N address bits of the  
ROM can be divided into (N/K) groups of K bits

So a ROM of size 2N   can be divided into N/K 
ROMs of size 2K    

Will need an adder to add the outputs of these 
ROMs and a multi-input accumulator   

This is an active area of research .



Comparisons in initial years of DA
Traditional comparisons are with multiplier-based 
solutions for problems pertaining to filters
When DA was devised (in the 1970s), the 
comparisons given were in terms of number of TTL 
ICs required for mechanization of a certain type of 
filter
In particular, for an eighth order digital filter 
operating at a word rate close to 1 MHz, 72 ICs with 
a total power consumption of about 30 W was stated 
with the DA approach while 240 ICs with a power 
dissipation of 96 W was indicated for a multiplier-
based solution



Current Status:  DA vs Mplr on FPGA
A study of computation of  Y = aX1 + bX2 + cX3 was 
performed with code developed in Verilog. Elements were 
chosen to have 8-bit size
A Spartan-XC3S500E based synthesis was carried out in 
Xilinx ISE 10.1
When built-in multipliers were used, the resource 
consumption was 35 slices and 3 multipliers. The 
combinational path delay  was 15.17 ns. 
For the DA-based solution, 47 slices were used and the max 
frequency of operation was 142.572 MHz.
Power consumption (obtained using XPower) for DA-based 
approach was slightly less than that for the multiplier-based 
solution
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