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Noise in resistors

I Random voltage fluctuations across a resistor

I Mean square value in a frequency range ∆f proportional to R
and T

I Independent of the material, size and shape of the conductor

I Contains equal (mean square) amplitudes at all frequencies
(upto a very high frequency) ⇒ Power contained in a
frequency range ∆f is the same at all frequencies or the
power spectral density is a constant.
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Questions

Why do these fluctuations occur?

I Electrons have thermal energy ⇒ a finite velocity

I At random points in time, they experience collisions with
lattice ions ⇒ velocity changes

I Velocity fluctuations lead to current fluctuations

What does the power spectral density of a random signal mean?
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Background

Background on random variables

I A sample space of outcomes that occur with certain
probability

I A function that maps elements of the sample space onto the
real line - random variable

I Discrete random variables - example is the outcome of a coin
tossing experiment

I Continuous random variables - Voltage across a resistor
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Background

Continuous Random variables

Continuous random variables are characterized by probability
density functions (pdfs). Examples are
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Moments of random variables
Mean

µx = E{X} =

∫ ∞

−∞
xf (x)dx

Variance
σ2 = E{X 2} − µ2

x

Correlation

RXY = E{XY } =

∫ ∞

−∞

∫ ∞

−∞
xyfXY (x , y)dxdy

Covariance
KXY = E{(X − µX )(Y − µY )}

I If KXY = 0, X and Y are uncorrelated. The correlation
coefficient is c = KXY

σX σY
.
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Random Processes

Random Processes

I Random variable as a function of time

I The value at any point in time determined by the pdf at that
time

I The pdf and hence the moments could be a function of time

I If {X1, . . . ..Xn} and {X1 + h, . . . .Xn + h} have the same joint
distributions for all t1, . . . tn and h > 0, it is nth order
stationary

I We will work with wide sense stationary (WSS) processes -
The mean is constant and the autocorrelation,
Rx(t, t + τ) = Rx(τ)
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Random Processes

Spectrum

Finite energy signals - eg. y(t) = e−at . The Fourier transform
exists and energy spectral density is |Y (f )|2

Finite power signals - eg. y(t) = sin(2πfot) + sin(6πfot). In this
case, can find the spectrum of the average power - eg. for y(t) it
is 1

2 at frequencies fo and 3fo .

Random signals are finite power signals, but are not periodic and
the Fourier transform does not exist. The question is how do we
find the frequency distribution of average power?
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Random Processes

Limit the extent of the signal

xT (t) = x(t), −T/2 ≤ t ≤ T/2

Find the Fourier transform XT (f ) of this signal. The energy
spectral density is defined as

ESDT = E{|XT (f )|2}

The power spectral density (PSD) is defined as

Sx(f ) = lim
T→∞

E{|XT (f )|2}
T

The total power in the signal is

Px(f ) =

∫ ∞

−∞
Sx(f )df
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Random Processes

Weiner-Khinchin Theorem

The inverse Fourier transform of |XT (f )|2 is xT (t) ∗ xT (−t) i.e.

F−1

[
E{XT (f )|2}

T

]
=

1

T

∫ T/2

−T/2
E{xT (t)xT (t + τ)}dt

But for WSS signals,

RX (τ) = E{xT (t)xT (t + τ)}

Therefore,
F [Rx(τ)] = Sx(f )
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Random Processes

Noise in resistors

Simple model

I Collisions occur randomly - Poisson process

I Velocities before and after a collision are uncorrelated

I Average energy per degree of freedom is kT
2

With these assumptions it is possible to show that SI (f ) = 4kT
R ⇒

the autocorrelation is a delta function (white noise). Also, using
central limit theorem, it has a Gaussian distribution. However,
continuous time white noise has infinite power and is therefore an
idealization.
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Random Processes

Representation of a noisy resistor

Sv (f) = 4kTR

SI(f) = 4kT
R
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LTI systems

Noise in Linear time-invariant systems

If h(t) is the impulse response of an LTI system,

y(t) = h(t) ∗ x(t)

Assume x(t) is a WSS process with autocorrelation Rx(τ)

E{y(t)y(t + τ)} =

∫ ∞

−∞

∫ ∞

−∞
h(α)h(β)E{x(t − α)x(t + τ − β)}dαdβ

=

∫ ∞

−∞

∫ ∞

−∞
h(α)h(β)Rx(τ + β − α)dαdβ

y(t) is also a WSS process and

Ry (τ) = h(τ) ∗ h(−τ) ∗ Rx(τ)
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LTI systems

PSD and Variance

If H(f ) = F{h(t)}, the power spectral density at the output is

Sy (f ) = F{Ry (τ)} = |H(f )|2Sx(f )

Noise power at the output is

Ry (0) =

∫ ∞

−∞
Sy (f )df

In linear systems, if the input has a Gaussian distribution, the
output is also Gaussian
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LTI systems

Example - RC Circuit

R

C

Vo

S=4kTR

I The output PSD is

Sy (f ) =
4kTR

1 + 4π2f 2R2C 2

I The total power at the output is

Py =

∫ ∞

0

4kTR

1 + 4π2f 2R2C 2
df

=
kT

C
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LTI Two port

Linear two ports - RLC circuits

I Resistors are the noise sources

I Assuming N noise sources, the in terms of the y parameters,
the output current can be written as

Iin = yiiVin + yioVo +
N∑

j=1

yijVj

Iout = yoiVin + yooVo +
N∑

j=1

yojVj

I Vj is the random noise source due to the j th resistor
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LTI Two port

Noisy RLC two ports - Representation

If Ini = −
∑N

j=1 yijVj and Ino = −
∑N

j=1 yojVj , the two-port can be
represented as a noiseless network with two additional noise
current at the two ports. Can also have a Z network, with noise
voltage sources at the two ports

Ini InoY

vni

vno

Z

+− + −

To get Ini and Ino , find the short circuit current at the two ports.
For vno and vni , find the open circuit voltage
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LTI Two port

Examples

R1

R2

R3

v2
ni = 4kT (R1 + R2)∆f

v2
no = 4kT (R3 + R2)∆f

I The two noise sources are
correlated

R1 R2

I 2
ni =

4kT

R1
∆f

I 2
no =

4kT

R2
∆f

The two sources are uncorrelated
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LTI Two port

Generalized Nyquist theorem

Supposing we have an RLC network and we wish to find the noise
at the output port. First remove all noise sources.

I Connect a unit current source Io at the output

I Voltage across resistor Rj due to Io is Vj = Zjo

I Power absorbed in Rj is Pj =
|Zjo |2
Rj

⇒ Total power dissipated

in the network is

P =
N∑

j=1

|Zjo |2

Rj

I Power delivered to the network by the source is

P = Re(Vo I ∗o ) = Re(Zo)
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LTI Two port

I Power delivered = Power dissipated
⇒

Re(Zo) =
N∑

j=1

|Zjo |2

Rj

I Now include noise current sources due to resistors. Output
voltage due to noise generated by resistors is

V̄o
2

= 4kT∆f
N∑

j=1

|Zoj |2

Rj

I Since the network is reciprocal Zoj = Zjo

V̄o
2

= 4kTRe(Zo)∆f

Called the Generalized Nyquist theorem
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LTI Two port

Vn − In Representation

vn

in

+−
I Replace all noise sources in the network by an equivalent noise

voltage and current source in the input port, so that the
correct output noise spectral density is obtained

I Once again, the two sources could be correlated
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LTI Two port

I Comparing with the In − In representation,

Vn =
−Ino

yoi

In = Ini −
yii

yoi
Ino

I The correlation coefficient is

civ (f ) =
E{InV ∗

n }
[E{I 2

n }E{V 2
n }]

1
2

=
Siv (f )

[Sni (f )Snv (f )]
1
2



Fundamentals of Noise

LTI Two port

Noise figure of a two-port network

Ins In

Vn

+−

Ys

F =
Total noise power at the output per unit bandwidth

Output noise power per unit bandwidth due to the input

F =
E{|Ins + In + YsVn|2}

E{|Ins |2}

= 1 +
Sni (f )

Ss(f )
+ |Ys |2

Snv (f )|2

Ss(f )
+ 2Re(civY ∗

s )
[Sni (f )Snv (f )]

1
2

Ss(f )

Depending on the correlation coefficient, one can use the right
type of source impedence to minimize noise figure
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LTI Two port
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