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Noise in resistors

» Random voltage fluctuations across a resistor

» Mean square value in a frequency range Af proportional to R
and T

» Independent of the material, size and shape of the conductor
» Contains equal (mean square) amplitudes at all frequencies
(upto a very high frequency) = Power contained in a

frequency range Af is the same at all frequencies or the
power spectral density is a constant.
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Questions

Why do these fluctuations occur?
» Electrons have thermal energy = a finite velocity

» At random points in time, they experience collisions with
lattice ions = velocity changes

» Velocity fluctuations lead to current fluctuations

What does the power spectral density of a random signal mean?
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Background on random variables

» A sample space of outcomes that occur with certain
probability

» A function that maps elements of the sample space onto the
real line - random variable

» Discrete random variables - example is the outcome of a coin
tossing experiment

» Continuous random variables - Voltage across a resistor



Fundamentals of Noise
LBackground

Continuous Random variables

Continuous random variables are characterized by probability

1

density functions (pdfs). Examples are
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Moments of random variables

Mean ~
ux = E{X} = / xf (x)dx
Variance
o? = E{X?*} — i3
Correlation
Rxy = E{XY} = / / xyfxy (x, y)dxdy
Covariance

Kxy = E{(X — px)(Y — py)}

» If Kxy =0, X and Y are uncorrelated. The correlation

coefficient is ¢ = fxv
oxoy
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Random Processes

» Random variable as a function of time

» The value at any point in time determined by the pdf at that
time

» The pdf and hence the moments could be a function of time

> If {X1,....Xh} and {X1 + h,.... X, + h} have the same joint
distributions for all t1,...t, and h > 0, it is nt" order
stationary

» We will work with wide sense stationary (WSS) processes -

The mean is constant and the autocorrelation,
Ru(t,t +7) = Re(7)
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Spectrum

Finite energy signals - eg. y(t) = e 2'. The Fourier transform
exists and energy spectral density is | Y(f)|?

Finite power signals - eg. y(t) = sin(2nf,t) + sin(67f,t). In this
case, can find the spectrum of the average power - eg. for y(t) it
is % at frequencies f, and 3f,.

Random signals are finite power signals, but are not periodic and
the Fourier transform does not exist. The question is how do we
find the frequency distribution of average power?
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Limit the extent of the signal
xr(t)=x(t), —-T/2<t<T/2

Find the Fourier transform X1 (f) of this signal. The energy
spectral density is defined as

ESDt = E{|X7 ()]}
The power spectral density (PSD) is defined as

5.(r) = jim EUXT(OP)

The total power in the signal is

- /_Z Su(F)df
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Weiner-Khinchin Theorem

T

The inverse Fourier transform of | X7(f)|? is x7(t) * x7(—t) i.e.
Fl [
But for WSS signals,

E{XT(f)|2}] _ % /”2
-T

/2 E{xr(t)xr(t +7)}dt

Therefore,

Rx(’]‘) = E{XT(t)XT(t + 7’)}

f[RX(T)] = Sx(f)
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Noise in resistors

Simple model

» Collisions occur randomly - Poisson process

» Velocities before and after a collision are uncorrelated

» Average energy per degree of freedom is %

With these assumptions it is possible to show that 5;(f) = % =
the autocorrelation is a delta function (white noise). Also, using
central limit theorem, it has a Gaussian distribution. However,
continuous time white noise has infinite power and is therefore an

idealization.
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Representation of a noisy resistor
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Noise in Linear time-invariant systems

If h(t) is the impulse response of an LTI system,

y(t) = h(t) * x(¢)

Assume x(t) is a WSS process with autocorrelation Ry(7)
Epove+n) = [ [ H@DEX(E - ax(t+ 7 - )}dads
= /_OO /_oo h(a)h(B)Ry(T + 8 — a)dadf

y(t) is also a WSS process and

Ry (1) = h(7) * h(—7) * Re(T)
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PSD and Variance

If H(f) = F{h(t)}, the power spectral density at the output is
Sy(F) = F{Ry(T)} = |H(F)*Sx(f)

Noise power at the output is

RO = [ s,

In linear systems, if the input has a Gaussian distribution, the
output is also Gaussian
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Example - RC Circuit

» The output PSD is
4kTR
S(f) =
e v(f) 14 472f2R2C2
Vo
VW » The total power at the output is
s=4kTR§\? l c

I I b, - /000 4KTR

f
1+ 47r2f2R2C2d
_ kT
- C
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Linear two ports - RLC circuits

» Resistors are the noise sources

» Assuming N noise sources, the in terms of the y parameters,
the output current can be written as

N

Iin = Yii\/in+YioVo+ZyU\/j
j=1
N

lout = YOi\/in+YOoVo+ZYOj\/j
Jj=1

» V; is the random noise source due to the jt resistor
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Noisy RLC two ports - Representation

N N
If I,j = — ijl yiVi and o = — ijl Yoj Vj, the two-port can be
represented as a noiseless network with two additional noise
current at the two ports. Can also have a Z network, with noise

voltage sources at the two ports

Vno

ol o

O | v | On

To get I, and I,,,, find the short circuit current at the two ports.
For vpo and vy, find the open circuit voltage
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Examples

R,

V2

= 4kT(R1 + RQ)Af
2

Vho =

4kT(R3 + RQ)Af

» The two noise sources are
correlated

4kT
1% = TlAf
2 _ AkT

no

—Af
R>

The two sources are uncorrelated
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Generalized Nyquist theorem

Supposing we have an RLC network and we wish to find the noise
at the output port. First remove all noise sources.

» Connect a unit current source /, at the output

» Voltage across resistor R; due to I, is V; = Zj,
‘2

» Power absorbed in R; is P; = 1Zjo

R = Total power dissipated

in the network is

» Power delivered to the network by the source is

P = Re(V,I}) = Re(Z,)
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» Power delivered = Power dissipated
~ N
|Z5o|

Re(Z,) = Z R
=t

» Now include noise current sources due to resistors. Output
voltage due to noise generated by resistors is

N 2
52 | Zoj
V> = akTAFS 290
° Z R:

j=t 7

> Since the network is reciprocal Z,; = Zj,
V,? = 4kTRe(Z,)Af

Called the Generalized Nyquist theorem
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V,, — I, Representation

N T
{0

> Replace all noise sources in the network by an equivalent noise
voltage and current source in the input port, so that the
correct output noise spectral density is obtained

» Once again, the two sources could be correlated
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:
» Comparing with the I, — I, representation,

Vn — _an
Yoi
/n — Ini - ﬁlno
Yoi
» The correlation coefficient is

Civ(f) E{I,,V:}

_ _ Sl
[E{IZYE{V2}]Z  [Sui(F)San(F)]

NI
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Noise figure of a two-port network

Total noise power at the output per unit bandwidth

- Output noise power per unit bandwidth due to the input

E{|lns + I + YsVa|?}

g E{lInsl2}
. 2 , 3
1 + Ssr;l((:)) + |Ys|2 52;((];-))| + 2R6(C,‘V Ys*) [Snl(f;s*?r;_\;(f)]

Depending on the correlation coefficient, one can use the right
type of source impedence to minimize noise figure
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