Indian Institute of Technology Madras Global Initiative of Academic Network (GIAN) Programme

Name	Mingoo Seok	
Designation	Assistant Professor	
Affiliation	Columbia University	
	500 West 116 th Street, MC:4712	
	New York, NY 10027,	
	United State of America	
Title of the Course	Near/sub-threshold circuits and architectures for microprocessors	
Content of the Course		
(a) <u>Overview of the Course:</u>		
In this course, we will introduce recent and important techniques for designing ultra-low-power		
computing hardware (e.g., microprocessors) in near/sub-threshold digital circuits for creating ultra-		
low-power Internet of the Things (IoT) devices. We will study techniques ranging across layers from		
transistors to gates to architectures. Those techniques aim to address three important challenges in		
near/sub-threshold voltage circuits, namely extreme variability, active leakage, and low computing		
throughput. The course consists of five three-hour lectures, assignments, and a final exam.		
(b) <u>Objectives of the course</u> :		
The goal of the course is to have students understand key challenges in designing near/sub-		
threshold voltage digital computing hardware and also learn techniques to address them.		
(c) <u>Syllabus and lecture-wise outlineofthe course:</u>		
The topics that will be covered in lectures are as follow.		
Lecture 1:motivations; near/sub-threshold voltage circuits; transistor characteristics in near/sub-		
threshold voltages		
Lecture 2:gate-level design; standard-cell design optimization		
Lecture 3: variability challenge overview: sensor-based adaptive design; adaptive design based on		
in-situ error detection and correction techniques part-1		
Lecture 4: adaptive design based on in-situ error detection and correction techniques part-2		
Lecture 5:pipeline and parallel architectures in near/sub-threshold voltage circuits.		
Prerequisites: Students are expected to be familiar with digital circuit design and logic design, and		

preferably also with microprocessor architectures, typically covered in senior-year undergraduate or			
first-year master programs.			
Evaluation Pattern for the Course			
Weightage (in %) for Assignments	50		
Weightage (in %) for Examination(s)	50		