Pipelined Analog to Digital Converters IIT Madras

Nagendra Krishnapura

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

18 March 2009

Motivation for multi step A/D conversion

- Flash converters:
 - Area and power consumption increase exponentially with number of bits N
 - Impractical beyond 7-8 bits.
- Multi step conversion-Coarse conversion followed by fine conversion
 - Multi-step converters
 - Subranging converters
- Multi step conversion takes more time
 - Pipelining to increase sampling rate

Two step A/D converter-basic operation

- Second A/D quantizes the quantization error of first A/D
- Concatenate the bits from the two A/D converters to form the final output

Two step A/D converter-basic operation

- A/D1, DAC, and A/D2 have the same range V_{ref}
- Second A/D quantizes the quantization error of first A/D
 - Use a DAC and subtractor to determine residue V_q
 - Amplify V_q to full range of the second A/D
- Final output *n* from *m*, *k*
 - A/D1 output is m(DAC) output is $m/2^{M}V_{ref}$
 - A/D2 input is at k^{th} transition $(k/2^K V_{ref})$
 - $V_{in} = k/2^K V_{ref} \times 1/2^M + m/2^M V_{ref}$
 - $V_{in} = (2^K m + k)/2^{M+K} V_{ref}$
- Resolution N = M + K, output ⇒ n = 2^Km + k ⇒
 Concatenate the bits from the two A/D converters to form the final output

Two step A/D converter: Example with M = 3, K = 2

- Second A/D quantizes the quantization error of first A/D
- Transitions of second A/D lie between transitions of the first, creating finely spaced transition points for the overall A/D.

Residue V_q

- V_q vs. V_{in}: Discontinuous transfer curve
 - Location of discontinuities: Transition points of A/D1
 - Size of discontinuities: Step size of D/A
 - Slope: unity

Two step A/D converter—ideal A/D1

- ullet A/D1 transitions exactly at integer multiples of $V_{ref}/2^M$
- Quantization error V_q limited to $(0, V_{ref}/2^M)$
- $2^M V_q$ exactly fits the range of A/D2

Two step A/D converter—M bit accurate A/D1

- A/D1 transitions in error by up to $V_{ref}/2^{M+1}$
- Quantization error V_q limited to $(-V_{ref}/2^{M+1}, 3V_{ref}/2^{M+1})$ —a range of $V_{ref}/2^{M-1}$
- 2^M V_q overloads A/D2

Two step A/D with digitial error correction (I)

- Reduce interstage gain to 2^{M-1}
- Add $V_{ref}/2^{M+1}$ (0.5 LSB1) offset to keep V_q positive
- Subtract 2^{K-2} from digital output to compensate for the added offset
- Overall accuracy is N = M + K 1 bits; A/D1 contributes M 1 bits, A/D2 contributes K bits; 1 bit redundancy
- Output $n = 2^{K-1}m + k 2^{K-2}$

Two step A/D with digitial error correction (I)—Ideal A/D1

- $2^{M-1}V_q$ varies from $V_{ref}/4$ to $3V_{ref}/4$
- $2^{M-1}V_q$ outside this range implies errors in A/D1

Two step A/D with digitial error correction (I)—M bit accurate A/D1

- $2^{M-1}V_q$ varies from 0 to V_{ref}
- A/D2 is not overloaded for up to 0.5 LSB errors in A/D1

Two step A/D with digitial error correction (I)—M bit accurate A/D1

- A/D1 Transition shifted to the left
 - m greater than its ideal value by 1
 - k lesser than than its ideal value by 2^{K-1}
 - A/D output $n = 2^{K-1}m + k 2^{K-2}$ doesn't change
- A/D1 Transition shifted to the right
 - m lesser than its ideal value by 1
 - k greater than than its ideal value by 2^{K-1}
 - A/D output $n = 2^{K-1}m + k 2^{K-2}$ doesn't change
- 1 LSB error in m can be corrected

Two step A/D with digitial error correction (II)

- Reduce interstage gain to 2^{M-1}
- Shift the transitions of A/D1 to the right by $V_{ref}/2^{M+1}$ (0.5 LSB1) to keep V_q positive
- Overall accuracy is N = M + K 1 bits; A/D1 contributes M 1 bits, A/D2 contributes K bits; 1 bit redundancy
- Output $n = 2^{K-1}m + k$, no digital subtraction required *Rightarrow* simpler digital logic

Two step A/D with digitial error correction (II)—Ideal A/D1

- $2^{M-1}V_q$ varies from 0 to $3V_{ref}/4$; $V_{ref}/4$ to $3V_{ref}/4$ except the first segment
- $2^{M-1}V_q$ outside this range implies errors in A/D1

Two step A/D with digitial error correction (II)—M bit accurate A/D1

- $2^{M-1}V_q$ varies from 0 to V_{ref}
- A/D2 is not overloaded for up to 0.5 LSB errors in A/D1

Two step A/D with digitial error correction (II)—M bit accurate A/D1

- A/D1 Transition shifted to the left
 - m greater than its ideal value by 1
 - k lesser than than its ideal value by 2^{K-1}
 - A/D output $n = 2^{K-1}m + k$ doesn't change
- A/D1 Transition shifted to the right
 - m lesser than its ideal value by 1
 - k greater than than its ideal value by 2^{K-1}
 - A/D output $n = 2^{K-1}m + k$ doesn't change
- 1 LSB error in m can be corrected

Two step A/D with digitial error correction (II-a)

- 0.5LSB (V_{ref}/2^{M-1}) shifts in A/D1 transitions can be tolerated
- If the last transition ($V_{ref} V_{ref}/2^{M-1}$) shifts to the right by $V_{ref}/2^{M-1}$, the transition is effectively nonexistent-Still the A/D output is correct
- Remove the last comparator $\Rightarrow M$ bit A/D1 has $2^M 2$ comparators set to $1.5V_{ref}/2^M, 2.5V_{ref}/2^M, \dots, V_{ref} 1.5V_{ref}/2^M$
- Reduced number of comparators

Two step A/D with digitial error correction (IIa)—Ideal A/D1

- $2^{M-1}V_q$ varies from 0 to V_{ref} ; $V_{ref}/4$ to $3V_{ref}/4$ except the first and last segments
- 2^{M-1} V_q outside this range implies errors in A/D1

Two step A/D with digitial error correction (IIa)—M bit accurate A/D1

- $2^{M-1}V_q$ varies from 0 to V_{ref}
- A/D2 is not overloaded for up to 0.5 LSB errors in A/D1

Two step A/D with digitial error correction (IIa)—M bit accurate A/D1

- A/D1 Transition shifted to the left
 - m greater than its ideal value by 1
 - k lesser than than its ideal value by 2^{K-1}
 - A/D output $n = 2^{K-1}m + k$ doesn't change
- A/D1 Transition shifted to the right
 - m lesser than its ideal value by 1
 - k greater than than its ideal value by 2^{K-1}
 - A/D output $n = 2^{K-1}m + k$ doesn't change
- 1 LSB error in m can be corrected

Multi step converters

- Two step architecture can be extended to multiple steps
- All stages except the last have their outputs digitally corrected from the following A/D output
- Number of effective bits in each stage is one less than the stage A/D resolution
- Accuracy of components in each stage depends on the accuracy of the A/D converter following it.
- Accuracy requirements less stringent down the pipeline, but optimizing every stage separately increases design effort
- Pipelined operation to obtain high sampling rates
- Last stage is not digitally corrected

Multi step A/D converter

- 4,4,4,3 bits for an effective resolution of 12 bits
- 3 effective bits per stage
- Digital outputs appropriately delayed before addition

Multi step converter-tradeoffs

- Large number of stages, fewer bits per stage
 - Fewer comparators, low accuracy-lower power consumption
 - Larger number of amplifiers-power consumption increases
 - Larger latency
- Fewer stages, more bits per stage
 - More comparators, higher accuracy designs
 - Smaller number of amplifiers-lower power consumption
 - Smaller latency
- Typically 3-4 bits per stage easy to design

1.5b/stage pipelined A/D converter

- To resolve 1 effective bit per stage, you need 2² 2, i.e. two comparators per stage
- Two comparators result in a 1.5 bit conversion (3 levels)
- Using two comparators instead of three (required for a 2 bit converter in each stage) results in significant savings

1.5b/stage pipelined A/D converter

Digital outputs appropriately delayed before addition

Switched capacitor (SC) amplifier

- ϕ_2 : C_1 connected to ground; C_2 reset; reset switch provides dc negative feedback around the opamp
- ϕ_1 : Input sampled on C_1 ; C_2 in feedback
- φ₂ → φ₁: Charge at virtual ground node is conserved
 ⇒ V_{out} = -C₁/C₂V_{in}

Non inverting SC amplifier

• Change the phase of input sampling to invert the gain

SC realization of DAC and amplifier

- Pipelined A/D needs DAC, subtractor, and amplifier
 - V_{in} sampled on C in ϕ_2 (positive gain)
 - V_{ref} sampled on $m/2^MC$ in ϕ_1 (negative gain).
 - At the end of ϕ_1 , $V_{out} = 2^{M-1} (V_{in} m/2^M V_{ref})$

SC realization of DAC and amplifier

 m/2^MC realized using a switched capacitor array controlled by A/D1 output

Two stage converter timing and pipelining

Two stage converter timing and pipelining

- φ₁
 - S/H holds the input $V_i[n]$ from the end of previous ϕ_2
 - A/D1 samples the output of S/H
 - Amplifier samples the output of S/H on C
 - Opamp is reset
- φ₂
 - S/H tracks the input
 - A/D1 regenerates the digital value *m*
 - Amplifier samples V_{ref} of S/H on m/2^MC
 - Opamp output settles to the amplified residue
 - A/D2 samples the amplified residue
- φ₂
 - A/D2 regenerates the digital value k. m, delayed by 1/2 clock cycle, can be added to this to obtain the final output
 - S/H, A/D1, Amplifier function as before, but on the next sample $V_i[n+1]$
- In a multistep A/D, the phase of the second stage is reversed when compared to the first, phase of the third stage is the same as the first, and so on

Effect of opamp offset

- ϕ_2 : C_1 is charged to $V_{in} V_{off}$ instead of $V_{in} \Rightarrow$ input offset cancellation; no offset in voltage across C_2
- ϕ_2 : $V_{out} = -C_1/C_2V_{in} + V_{off}$; Unity gain for offset instead of $1 + C_1/C_2$ (as in a continuous time amplifier)

Correction of offset on C_2

- ϕ_2 : Charge C_2 to the offset voltage instead of 0 V
- ϕ_1 : $V_{out} = -C_1/C_2V_{in}$; Offset completely cancelled

Nonidealities

- Random mismatch: Capacitors must be large enough (relative matching α 1/ $\sqrt{\textit{WL}}$ to maintain DAC, amplifier accuracy
- Thermal noise: Capacitors must be large enough to limit noise well below 1 LSB. Opamp's input referred noise should be small enough.
- Opamp dc gain: Should be large enough to reduce amplifier's output error to $V_{ref}/2^{K+1}$.
- Opamp bandwidth: Should be large enough for amplifier's output settling error to be less than $V_{ref}/2^{K+1}$.

Thermal noise in SC amplifiers

- Noise from switch resistances
- Noise from the amplifier-ignored

Thermal noise in SC amplifiers

- φ₂:
 - R_{sw1} : C_1 has a voltage noise of variance kT/C_1
 - R_{sw2} : C_2 has a voltage noise of variance kT/C_2 .
- φ₁:
 - R_{sw1} : Its contribution in $\phi_2 (kT/C_1)$ will be amplified to $kT/C_1(C_1/C_2)^2$
 - R_{sw2} : Its contribution in $\phi_2(kT/C_1)$ will be held
 - R_{sw3} : Results in a noise kT/C_1 on C_1 and $kT/C_1(C_1/C_2)^2$ at the output
- Total output noise: $kT/C_2(2C_1/C_2+1) \approx 2kT/C_1(C_1/C_2)^2$
- Input referred noise: $kT/C_1(2+C_2/C_1)\approx 2kT/C_1$
- C₁ must be large enough to minimize the effects of thermal noise

Op amp models

- Opamp has finite dc gain, predominantly first order rolloff, and many high frequency poles
- High frequency poles should be beyond the unity gain frequency of the feedback loop gain (not necessarily the opamp's open loop gain) for stability.
- Effect of dc gain and first order rolloff modeled separately for simplicity

Effect of opamp dc gain

- ϕ_2 : $V_{out} = V_x = 0$
- ϕ_1 : $V_{out} = C_1/C_2 \times 1/[1 + (1 + C_1/C_2)/A_0]V_{in}$;
- Reduced dc gain in the amplifier
- Error should be smaller than $V_{ref}/2^{K+1} \Rightarrow A_0 > 2^{M+K} + 2^{K+1} 2^{M-1} 1$
- Approximately, $A_0 > 2^{M+K}$, 2/LSB of the overall converter

Effect of finite unity gain frequency of the opamp

- Incomplete reset
- Worst case: $V_{out}(0) = V_{ref}$; Error smaller than $V_{ref}/2^{K+1}$ at the $t = T_s/2$
- $\omega_u \ge 2 \ln(2) (K+1) f_s$
- $p_{2,3,...} > \omega_u$

Effect of finite unity gain frequency of the opamp

- ϕ_1 : $V_{out}(t) = C_1/C_2 V_{in} \left(1 \exp(-\omega_u \frac{C_2}{C_1 + C_2} t)\right) + V_{out}(0) \exp(-\omega_u \frac{C_2}{C_1 + C_2} t)$
- Incomplete settling of amplified residue V_q
- Worst case: $C_1/C_2V_{in} = V_{ref}$; Error smaller than $V_{ref}/2^{K+1}$ at the $t = T_s/2$; $V_{out}(0) = 0$ after reset.
- $\omega_u/(1+2^{M-1}) \ge 2 \ln(2)(K+1)f_s$ (ω_u in rad/s, f_s in Hz)
- $\omega_u/(1+2^{M-1})$ is the unity loop gain frequency assuming no parasitics
- $p_{2,3,...} > \omega_u/(1+2^{M-1})$

Effect of finite unity gain frequency of the opamp

- Depending on amplifier topology, reset and amplifying phases pose different constraints
- In our example, amplifying phase constraint is more stringent (loop gain in amplifying and reset phases are very different-better to have them close to each other)
- ω_u itself can depend on capacitive load(different for ϕ_1, ϕ_2)
- Higher order poles p_2, p_3, \ldots need to be placed above the unity loop gain frequency, not necessarily ω_u

Single stage opamp-transconductor

- ϕ_2 : Capacitive load = C_1
- ϕ_1 : Capacitive load = $C_1 C_2/(C_1 + C_2)$

Single stage opamp-transconductor

- Loop broken at the opamp input to evaluate loop gain
- φ₂
 - $V_{out}(s)/V_t(s) = g_m/sC_1$
 - Opamp unity gain frequency $\omega_u = g_m/C_1$
 - $V_t(s)/V_t(s) = g_m/sC_1$
 - Unity loop gain frequency $\omega_{u,loop} = g_m/C_1$
- φ₁
 - $V_{out}(s)/V_t(s) = g_m/s(C_1C_2/C_1 + C_2)$
 - Opamp unity gain frequency $\omega_u = g_m/(C_1C_2/C_1 + C_2)$
 - $V_t(s)/V_t(s) = g_m/sC_1$
 - Unity loop gain frequency $\omega_{u,loop} = g_m/C_1$

Two step A/D: errors

- Model each error as an error voltage
- Determine $V_{in}[m]$ for which A/D1 changes from m-1 to m
- Determine $V_{in}[m, k]$ for which A/D1 output is m and A/D2 changes from k-1 to k
- Compare V_{in}[m, k] to corresponding ideal values to find the error

Two step A/D: Residue amplifier gain error

- Amplified residue doesn't exercise all combinations of m, k
- Results in missing codes

Two step A/D: Residue amplifier gain error

Ideally

$$\frac{V_{in}[m,k]}{V_{ref}} = \frac{m2^{K-1} + k}{2^{M+K-1}}$$

With gain error

$$V_{in}[m, k] = \frac{mV_{ref}}{2^{M}} + \frac{kV_{ref}}{2^{M+K-1}}(1 + \delta)$$

 $\frac{V_{in}[m, k]}{V_{ref}} = \frac{2^{K-1}m + k(1 + \delta)}{2^{M+K-1}}$

- Digital representation of $V_{in}[m, k]$ corresponds to an output of $2^{K-1}m + k(1 + \delta)$
- k must be digitally multiplied by $1 + \delta$ before addition

Two step A/D: Correction for gain error

- k must be digitally multiplied by $1 + \delta$ before adding it to $2^{K-1}m$
- $(1 + \delta)$ of the form $1.00000xxx_2 \Rightarrow$ Wider multipliers necessary at each stage
- Although $D_{out} = 2^{K-1}m + (1 + \delta)k$ versus $V_{in}[m, k]$ is linear, some combinations of [m, k] are missing \Rightarrow reduced effective resolution
- Effective resolution is smaller than M + K 1 and K needs to be increased to preserve resolution
- If amplifier gain error varies from δ_1 to δ_2 , calibrate for $(\delta_1 + \delta_2)/2$

Multi step converter-opamp power consumption

- Opamp power consumption a large fraction of the converter power consumption
- Amplification only in one phase
- Successive stages operate in alternate phases
- Share the amplifiers between successive stages ([1])

Multi step converter-with offset cancellation

Multi step converter-no offset cancellation

Multi step converter-Amplifier sharing

Multi step converter

- ullet First stage uses the opamp only in ϕ_1
- ullet Second stage uses the opamp only in ϕ_2
- Use a single opamp
 - Switch it to first stage in ϕ_1
 - Switch it to second stage in ϕ_2
- Reduces power consumption
- Cannot correct for opamp offsets
- Memory effect because of charge storage at negative input of the opamp

Multi step converter-Further optimization ([2])

- Alternate stages with more and fewer bits e.g. 3-1-3-1
- Optimized loading
- Use a two stage opamp for stage 1 (High gain)
- Use a single stage opamp for stage 2 (Low gain)

Multi step converter-Further optimization ([2])

- Use a single two stage opamp
 - Use both stages for stage 1 of the A/D
 - Use only the second stage for stage 2 of the A/D
 - Feedback capacitor in stage 2 of the A/D appears across the second stage of the opamp—Miller compensation capacitor
- Further Reduces power consumption
- Optimized realization in [2] achieves 12 bit resolution at 21 MS/s using 35 mW in 0.6 μ m CMOS

References

K. Nagaraj et al., "A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers", *IEEE Journal of Solid-State Circuits*, pp. 312-320, vol. 32, no. 3, March 1997.

S. Kulhalli et al., "A 30mW 12b 21MSample/s pipelined CMOS ADC", 2002 IEEE International Solid State Conference, pp. 18.4, vol. I, pp. 248-249,492, vol. II.