ACTIVE FILTER DESIGN : PROBLEM SET 3

Problem 1

A third order Chebyshev lowpass filter is to be used as the prototype for 6th order bandpass filter. In the passband of the BPF, which is defined by 10 MHz < f < 11 MHz, a ripple of 0.5 dB is desired. The terminating resistors for the bandpass filter must be 50Ω .

- a. Find the element values for the lowpass prototype, choosing the ladder topology that minimizes the number of inductors used.
- b. Find the element values of the bandpass network.
- c. Simulate the bandpass filter in SPICE. Plot the magnitude and group delay responses. What do you notice ?

Problem 2

In this excercise, we use Richard's Transformation to design a microwave "lowpass" filter, with a bandedge of 1 GHz. The spectrum must repeat with a period of 5 GHz. Scale the 3rd order Chebyshev LC ladder from Problem 2 to have a bandedge of 1 GHz. Use this as your "lowpass" prototype.

- a. Find the characteristic impedances and time delays of the transmission lines required to realize the filter.
- b. Simulate the frequency responses of the filters in SPICE. Plot the magnitude response of the lowpass prototype. The x-axis of the graph must range from 0-10 GHz. On the same plot, show the (periodic) response of the microwave filter. Which has a sharper transition ? Why ?
- c. Plot the unit step responses of both filters on the same graph. The time axis must range from 0-4 ns. What do you observe ?

Problem 3 : Sensitivity Relations

Consider a filter with a transfer function H(f) built using resistors, capacitors and voltage amplifiers. Further, let $H_{ik}(f)$ be the voltage transfer function from v_i to v_k , the voltage developed across the resistor R_k . Let $H_{ko}(f)$ be the transfer function from the voltage source v_k inserted in series with the resistor to the filter output as shown in Figure 1.

- a. Show that $H_{ik}(f)H_{ko}(f) = H(f)S_{R_k}^{H(f)}$. This is called Bykhovski's sensitivity relation.
- b. Show that $\sum_j S_{C_j}^{H(f)} = \sum_k S_{R_k}^{H(f)} = fH'(f)/H(f)$.
- c. Using the results in parts (a) & (b) above, show that $\sum_k H_{ik}(f)H_{ko}(f) = fH'(f)$.

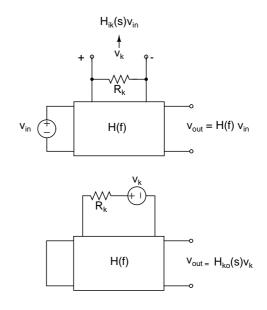


Figure 1: Definitions of H(f), $H_{ik}(f)$ and $H_{ko}(f)$.