Lecture-1

EE5325 Power Management Integrated Circuits

Dr. Qadeer Ahmad Khan

Integrated Circuits and Systems Group
Department of Electrical Engineering
IIT Madras

What is Power Management?

Deals with Efficient and Reliable Power Delivery to a system

- Voltage conversion from one power domain to other
 - DC-DC Conversion (Regulators)
 - AC-DC/DC-AC Conversion (Rectifiers/Inverters)

- Voltage/Current Measurement
 - Voltage and Current Sensing

- Managing Losses or Heat
 - Current de-rating
 - Dynamic Voltage Scaling (DVS)
What is Power Management?
Deals with Efficient and Reliable Power Delivery to a system

- Voltage conversion from one power domain to other
 - DC-DC Conversion (Regulators)
 - AC-DC/DC-AC Conversion (Rectifiers/Inverters)
- Voltage/Current Measurement
 - Voltage and Current Sensing
- Managing Losses or Heat
 - Current de-rating
 - Dynamic Voltage Scaling (DVS)

Achieved by controlling or managing power delivered to load

Types of Power Management

High Power:
- 100s to KWatts range powered by direct AC
- Discrete semiconductor devices (FETs, BJTs, diodes) and large passives

Low/Mid Power:
- mWatts to 10s of Watts powered from battery
- Integrated controller & power FETs with few small external passives

Source: ST Microelectronics
Types of Power Management

High Power:
- 100s to KWatts range powered by direct AC
- Discrete semiconductor devices (FETs, BJTs, diodes) and large passives

Low/Mid Power:
- mWatts to 10s of Watts powered from battery
- Integrated controller & power FETs with few small external passives

VLSI Power Management deals with mainly Low/Mid power applications

Need of Integrated Power Management
- Power demand is increasing while board space is shrinking

PMIC: 6mm x 6mm, 225 pins

Samsung Galaxy S4
Source: chipworks
Power delivery for these applications is mostly met by DC-DC Converters.
Applications in Self Powered Sensors

- Targeted for ultra low power applications – IoT
- Highly efficient, miniaturized low power converters
- Energy is harvested from freely available sources such as light, vibration, heat, RF

Structural Health Monitoring
- Powering Sensors from Mechanical Vibration
- Wireless Charging

Implantable Biomedical
- Charging Battery from Heart Beat
- Wireless Charging

Health Monitoring Systems
- Powering Sensors from Body Heat

DC-DC Power Converter
- Converts voltage from one domain to other
- Provides regulated output voltage
 - Under varying conditions (input voltage, output current)
Discrete Vs. Integrated Power Converters

VLSI Systems mostly use Integrated DC-DC Converters due to limited board space.

DC-DC Converter Types

Switching
- Inductive or Capacitive
 - Can generate output voltage less, greater, inverting or equal to input voltage.

Linear
- Low Drop-Out (LDO) Regulators
 - Can generate output voltage only less or equal to input voltage.
DC-DC Converter Types

![Diagram of DC-DC Converter Types]

Inductive or Capacitive
- Can generate output voltage less, greater, inverting or equal to input voltage.

Low Drop-Out (LDO) Regulators
- Can generate output voltage only less or equal to input voltage.

Switching vs Linear Regulator

Switching Regulator
- Regulation achieved by changing on/off time
- Switches are in either linear or cutoff → reduced losses
- High efficiency over wide range of V_O/V_{IN}

Linear Regulator
- Regulation achieved by dropping voltage
- Switches are in saturation → higher losses
- Poor efficiency when V_O/V_{IN} ratio is low
Switching vs Linear Regulator

Switching Regulator

- Regulation achieved by changing on/off time
- Switches are in either linear or cutoff \(\rightarrow \) reduced losses
- High efficiency over wide range of \(V_O/V_{IN} \)

More than 90% of power requirement is met by Switching Converters

Switching Vs Linear Regulator

- For \(V_{IN} = 5V, V_O = 1V \) and \(I_{Load} = 1A \)
 - 80% power loss in the Linear regulator as compared to 10% in switching regulator
- For \(V_{IN} = 5V, V_O = 4V \) and \(I_{Load} = 1A \)
 - 20% power loss in linear regulator as compared to 2.5% in switching regulator

Efficiency (\(\eta \)) = \(\frac{\text{Output Power}}{\text{Input Power}} \)
Switching vs Linear Regulator

Switching Regulator
- Regulation achieved by changing on/off time
- Switches are in either linear or cutoff → reduced losses
- High efficiency over wide range of V_O/V_{IN}

Linear Regulator
- Regulation achieved by dropping voltage
- Switches are in saturation → higher losses
- Poor efficiency when V_O/V_{IN} ratio is low

How to Choose Between Linear Vs Switching

- **Cost**
 - Linear Regulators are cheaper compared to switching

- **Power**
 - In a multi-power domain, linear regulator are preferred over switching regulators for low power domains
 - Switching regulators are preferred for high power applications

- **Conversion Ratio (V_{out}/V_{in})**
 - Efficiency of linear regulators is comparable to switching for higher V_{out}/V_{in} (>0.9)
 - Switching regulators are preferred when V_{out}/V_{in} is less

- **Noise**
 - Linear regulators are quiet compared to switching hence preferred over switching for noise sensitive applications such as RF, sensors and other analog circuitries