Assignment-1: EE5325 – Power Management Integrated Circuits

Submission due date: August 21, 2017

Exercise-1

In the figure shown below, derive the open and closed loop transfer functions. Find poles and zeroes of the open loop transfer function.

Considering following parameters:

 $V_{REF}=0.6V$, $V_{IN}=1.8V$ to 2.5V, $V_{O}=1.5V$, $R_{2}=100k\Omega$

Error amplifier gain, A=60dB and g_m=100uA/V

 g_m of PMOS transistor M_P, g_{mp} = 1mA/V and output resistance, r_{op} = ∞

 $C_P=1pF$, $C_O=1uF$, $R_{ESR}=10m\Omega$, $R_{LOAD}=1k\Omega$

- a) Calculate the locations of poles and zeroes of the loop gain. Draw the bode plot for magnitude and phase with phase margin. Determine if the loop is stable or not.
- b) If op-amp has offset of -10mV, find error in the output voltage, Vo.
- c) Suppose measured V_O was 1.55V, find the input referred offset.
- d) Find error in the output voltage due to finite gain.

Exercise-2

Figure-2 shows the conceptual circuit of a PTAT voltage reference:

Figure-2

- a) Assuming Q1 and Q2 identical (m=1) and $I_{C1}=3xI_{C2}$, plot V_{BE1} , V_{BE2} and Δ_{VBE} w.r.t. Temperature from -40°C to 120°C. What is the temperature coefficients (dV/dT) for the three voltages? Plot the temperature coefficients w.r.t. temperature and comment on non-linearity if there is any.
- b) Assuming Q1 and Q2 non-identical (m=20) and $I_{C1}=I_{C2}$, plot V_{BE1} , V_{BE2} and Δ_{VBE} w.r.t. Temperature from -40°C to 120°C. What is the temperature coefficients (dV/dT) for the three voltages? Plot the temperature coefficients w.r.t. temperature and comment on non-linearity if there is any.
- c) Assuming Q1 and Q2 non-identical (m=5) and and I_{C1} =2x I_{C2} , plot V_{BE1} , V_{BE2} and Δ_{VBE} w.r.t. Temperature from -40°C to 120°C. What is the temperature coefficients (dV/dT) for the three voltages? Plot the temperature coefficients w.r.t. temperature and comment on non-linearity if there is any.

Note:

• For Exercise-2, circuit should be analyzed and plotted on simulator (Cadence, LTSpice, etc.). You can use bipolar transistor model if available or a p-n diode. If size of bipolar or diode can't be changed in the parameter then use multiple devices in parallel.