EE5320: Analog Integrated Circuit Design; Assignment 6

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 24 April 2015

Figure 1:

1. Calculate the current flowing in each transistor in Fig. 1(a) in the quiescent condition. Calculate the small signal differential resistance $R_{\text {out }}$ looking into the drains of the two transistors.

In Fig. 1(b), calculate $\left(v_{o p}-v_{o m}\right) / i_{x}$. What is the condition for this to be infinity? What is the frequency at which this happens?

Figure 2:
2. Calculate the input impedance $Z_{i n}$ in Fig. 2. Is there anything special about it? Model the transistor using only its g_{m}.

Figure 3:
3. Calculate the small signal impedance v_{x} / i_{x}. What is the condition for this to be infinity? What is the frequency at which this happens? Model the transistor using only its g_{m}.

Figure 4:
4. In Fig. 4, assume that all nodes are at the self bias voltage of the inverter. Model the small signal gain of each inverter as $A_{0} /\left(1+s / p_{1}\right)$ and calculate the condition for instability (i.e. when the loop gain becomes -1). Hint: Among the roots of -1 , pick the one which satisfies the above for the lowest value of A_{0}.
5. What is the function of the circuits in Fig. 1(b),

Fig. 3, and Fig. 4?

