EE2019-Analog Systems and Lab: Tutorial 4

Nagendra Krishnapura, Shanthi Pavan

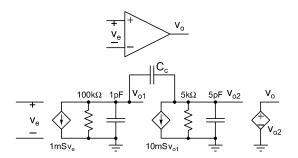


Figure 1: Circuit for problem 1

- 1. Fig. 1 shows the internal schematic of a Miller-compensated opamp. This opamp is used to realize a unity gain, non-inverting amplifier.
 - What is the phase margin?
 - Determine C_c so that the phase margin is 60° .
 - If the same opamp is used without any change to realize an inverting amplifier of gain −4, what are the phase margin and the closed loop bandwidth?
 - Re-design the opamp (value of C_c) so that when an inverting amplifier of gain -4 is realized using it, the phase margin is 60°. Compare the three cases wrt the following aspects:
 (a) Closed loop bandwidth, (b) phase margin,
 (c) phase lag contributed by the right-half-plane zero at the unity loop gain frequency.
 - Compare the bandwidths you obtain to the ones in the previous tutorial in which you simply increased C₁.

While determining the unity loop gain frequency, phase margin, and C_c , do the calculations with and without the approximation $C_c \gg C_{1,2}$.

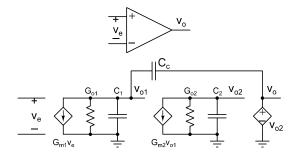


Figure 2: Circuit for problem 2

- 2. Determine the transfer function of the opamp in Fig. 2. How does it differ from the conventional Miller compensated opamp in the previous problem?
- 3. It is common to approximate the unity loop gain frequency as $\omega_{u,loop} \approx L_0 p_1$ where L_0 is the dc loop gain and p_1 is the dominant pole. If the loop gain is a second order function $L(s) = L_0/(1+s/p_1)(1+s/p_2)$, determine the exact unity loop gain frequency and the phase margin for the following cases: (a) $p_2 = 4L_0 p_1$, (b) $p_2 = 2L_0 p_1$, and (c) $p_2 = L_0 p_1$. Compare them to the values obtained using the approximation above. $L_0 \gg 1$.

(This approximation is very commonly used for hand calculations, but you should know how much error you end up with while doing so.)

Problem 4

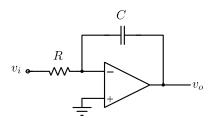


Figure 1: Circuit for Problem 1.

Fig. 1 shows an integrator. The opamp is ideal. The capacitor is initially uncharged. $v_i = \sin(\omega_o t) u(t)$, where $\omega_o = 1/RC$ and u(t) is the unit step function. Draw to scale, on the same graph, v_i and v_o . Repeat with $v_i = \cos(\omega_o t) u(t)$.

Problem 5

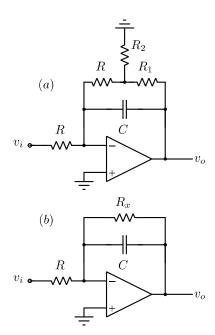


Figure 2: Circuit for Problem 2.

All opamps are ideal in Fig. 2. Determine the dc gain and 3-dB bandwidth of the circuit of Fig. 2(a). What R_x should be chosen in the circuit of Fig. 2(b) to obtain the same transfer function?

Evaluate R_x in the limiting case when $R_1, R_2 \ll R$. What might be the utility of the T-network in Fig. 2(a)?

Problem 6

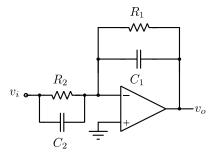


Figure 3: Circuit for Problem 3.

Determine the transfer function of the circuit of Fig. 3. Sketch a Bode plot.

Problem 7

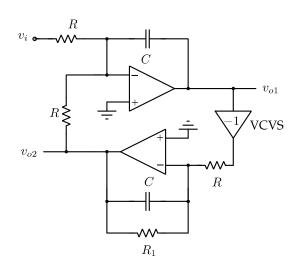


Figure 4: Circuit for Problem 4.

The opamps are ideal. Determine the transfer functions from the v_i to v_{o1} and v_{o2} .

Problem 8

The opamps are ideal. The initial conditions are marked. Plot the waveforms v_{o1} and v_{o2} .

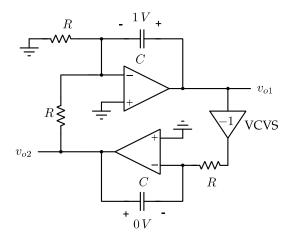


Figure 5: Circuit for Problem 5.

Problem 9

Consider the integrator of Fig. 1. The opamp is not ideal, but has a frequency dependent gain determined by GB/s, where GB denotes its gain-bandwidth product. Determine the integrator's transfer function, when a nonideal opamp is used.

Problem 10

Use the results of Problem 6 to evaluate the transfer function of the circuit of Fig. 4 when the opamps have a finite gain-bandwidth product. The VCVS can be assumed to be ideal.