Question-1

Consider a 3-bit flash ADC shown below. The comparators are ideal. Bits D_{0}, \ldots, D_{6} are combined to give a digital output, D. Outputs of comparators are 0 or 1 . $\mathrm{V}_{\text {REF }}$ $=1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IN}}=0.37 \mathrm{~V}$.
a) Find the digital output for the given input.
b) Sketch the digital output versus input voltage ($[0,1 \mathrm{~V}]$) for the flash ADC.
c) Sketch the DNL profile of the ADC.
d) Let T1 and T2 be shorted, T3 and T5 be shorted, and T6 and T7 be shorted together. Sketch the digital output versus input voltage ($[0,1 \mathrm{~V}]$) for the new flash ADC with shorted input reference voltage nodes.
e) Find the digital output for input $\mathrm{V}_{\mathbb{I N}}=0.37 \mathrm{~V}$ with ADC described in (d).

Question-2

A 3-step flash ADC is shown below. Comparator outputs $b_{1,2,3}$ are 1 or 0 . Switches are ideal with zero resistance for control voltage 1 V . Switches are open with control voltage 0 V .

a) Find ADC's output $\left(b_{2} b_{1} b_{0}\right)$ if $V_{\text {IN }}$ is 0.715 V .
b) Find comparator threshold voltages Vth2 and Vth3.

Question-3

In the circuit shown below, switched current sources are used with a resistor R to generate the reference voltage $\mathrm{V}_{\text {ref }}$ for comparison. The switches are ideal with zero ON resistance when control signal is high. The switch is turned OFF when control signal as 0 V . The comparator has an input referred offset voltage $V_{\text {off }} . V_{i}$ is the sampled input available for comparison. SAR logic is clocked using clock signal, CLK with time period T. SAR's outputs i.e., $B<4: 0>$ change every clock (CLK) period. Let $\mathrm{B}<4: 0>$ has 5 V has high voltage and OV as low voltage. Also, $\mathrm{I}_{0}=31.25 \mu \mathrm{~A}$ and $\mathrm{R}=1 \mathrm{k} \Omega$. Let $\mathrm{D}=0$ and $\mathrm{B}<4: 0>=0$ at $\mathrm{t}=0$.

a) If $\mathrm{V}_{\mathrm{i}}=0.743 \mathrm{~V}$ and $\mathrm{V}_{\text {off }}=0 \mathrm{~V}$, find D and $\mathrm{B}<4: 0>$ every clock period till a final digital equivalent is found for the input.
If $\mathrm{V}_{\mathrm{i}}=0.743 \mathrm{~V}$ and $\mathrm{V}_{\text {off }}=-31.25 \mu \mathrm{~V}$, suggest a method to generate a correct digital equivalent of the analog input with available components in the circuit and without adding any extra circuit components.

