1. Carefully sketch the following signals. Mark all the critical points.
(a) $g(t)=t u(-t-1)-u(-t-1)$
(b) $h(t)=e^{-t u(t)}, \quad-1 \leq t \leq 1$
2. Given a continuous-time signal specified by

$$
x(t)= \begin{cases}1-|t|, & -1 \leq t \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

plot the discrete-time sequence that results from uniform sampling of $x(t)$ for the following sampling intervals: (a) $0.25 \mathrm{~s},(\mathrm{~b}) 0.5 \mathrm{~s}$, and (c) 1 s .
3. For the signal $x(t)$ illustrated below, sketch (a) $x(t-4)$, (b) $x(t / 1.5)$, (c) $x(-t)$, (d) $x(2 t-4)$, and (e) $x(2-t)$.

4. Consider the signal $y(t)=(1 / 5) x(-2 t-$ $3)$ shown below. Determine and carefully sketch the original signal $x(t)$. Determine and carefully sketch $y_{o}(t)$, the odd portion of $y(t)$.

5. Identify the complex frequencies in the following signals: (a) $\cos 3 t$, (b) $e^{-3 t} \cos 3 t$, (c) $e^{2 t} \cos 3 t$, (d) $e^{-2 t}$, (e) $e^{2 t}$, and (f) 5 .
6. The unit pulse function $\Pi: R \longrightarrow R$ is defined as

$$
\Pi(t)= \begin{cases}1, & -\frac{1}{2} \leq t \leq \frac{1}{2} \\ 0, & \text { otherwise }\end{cases}
$$

Sketch the following signals and evaluate the energy of each one of them
(a) $\Pi(2 t)$.
(b) $6 \Pi(0.5 t)$.
(c) $\Pi(t-4)$.
(d) $\Pi\left(\frac{2-t}{2}\right)$.
(e) $\Pi\left(\frac{t+1}{2}\right)+\Pi(t-1)$.
7. Determine which of the following signals is periodic. If a signal is periodic, what is the fundamental period and average power?
(a) $\cos (\pi t)$.
(b) $A \sin (10 \pi t)$.
(c) $\sin (\sqrt{3} \pi t)$.
(d) $e^{j t}$.
(e) $A \sin (4 \pi t+\pi)$.
(f) $\sum_{n=-\infty}^{\infty} \Pi\left(t-\frac{n}{5}\right)$.
(g) $\sum_{n=-\infty}^{\infty} \Pi(t-2 n)$.

