ANALOG CIRCUITS : PROBLEM SET 7

shanthi@ee.iitm.ac.in

Problem 1

For the transistor shown, $\beta = 99$, $V_{BE} = 0.65$ V nominal. Find quiescent V_{CE} , r_i , r_o and the incremental voltage gain. Assume $v_L = (1 \text{ mV}) \sin \omega t$. All capacitors are infinite.

Problem 3

Problem 2

In the circuit shown, use $\alpha = 0.995$, $V_T = 25 \text{ mV}$. The quiescent V_{CE} must be 5 V and R_i - the resistance presented by the circuit to the driving source v_s must be 1.5 K. Use $V_{BE} = 0.7 \text{ V}$ nominally. Calculate V_{CC} , $R_1 \& R_2$ to get a small signal gain of -200.

How would the answers be affected for the following circuit

The input signal is small. A more comprehensive linear small-signal incremental equivalent circuit for the transistor is given in the form show below, where r_1 , r_2 , r_3 , g_m are $4 \text{ K}\Omega$, $8 \text{ M}\Omega$, $100 \text{ K}\Omega \& 50 \text{ mS}$. Calculate R_i , R_o and $\frac{v_o}{v_e}$.

The applied signal is very small. Calculate R_i and $\frac{v_o}{v_s}$ using the approximate equivalent circuit for the transistor. V_T and β are 30 mV and 199 respectively.

Problem 7

The input sine wave has $v_s = 2.5$ V. To get an undistorted output within swing limits, calculate V_{CC} and R. Take V_{BE} nominal = 0.65V. Also calculate R_i for small signals given that $\beta = 100$ and $V_T = 25$ mV.

Problem 5

The signal picture of a CE amplifier is as shown.

Find R_i , R_o and $\frac{v_o}{v_s}$ in terms of g_m , β and r_o . Find their limits when $\beta \to \infty$. The signal is small.

Problem 6

Assume in the figure shown that g_m is high enough to make the incremental voltage gain $\frac{v_o}{v_s}$ independent of the device. Assume all capacitors are large. Also assume that $aR || (1-a)R \ll (1+\beta)R$. Take $V_{EB} = 0.7$ normally; $I_{EQ}R_e = 4.3$ V. A gain of -4 is needed with the circuit being just capable of handling a maximum amplitude of 2 V for the input sinusoid v_s . V_{ee} should be the minimum possible for the specified $I_{EQ}R_E$. Calculate R_1 , R_e , V_{ee} and a.

Next remove the external load of 12 K. What will the limiting swings possible for v_o on either side now ? To what maximum amplitude will you have to restrict v_s if v_o is to be a full undistorted sine wave ?

Problem 8

 $V_{BE} = 0.65$ V nominally. $V_T = 25$ mV. For small signals, find R_i and $\frac{v_o}{i_o}$. Assume $\beta = 250$.

Problem 9

Assuming the signal to be very small calculate R_i , R_o and exact value of $\frac{v_o}{i_c}$. $\beta = 200$ and $r_o = 50$ K.

Take $V_T = 25 \text{ mV}$, $\beta = 99 \text{ and } V_{BE} = 0.6 \text{ nominally. Determine } \frac{v_o}{v}$, R_i , R_o and the output swing limits.

This configuration acts like a current controlled voltage source (low input and output impedance) when $g_m \rightarrow \infty$.

Problem 11

Yet another configuration of a CE amplifier is a shown.

Calculate for small signals R_i , R_o and v_o/v_s . (This is just circuit analysis). Give the limits for R_i , R_o and the conditions to be atisfied to make gain independent of the

device. When $g_m \rightarrow \infty$, what type of a controlled source does the amplifier act like ?

Problem 12

The capacitances are very large. v_o , the output sinusoid, is to be linked with the input sinusoid by a device independent gain factor of 2, with a limiting amplitude of 8 V before clipping sets in. v_o should just begin to distort at both the extremes.

Find V_{CC} , V_{BB} and R_e . V_{BE} is 0.7 V, nominally. Given that $R_b \ll (\beta_{DC} + 1)R_e$, comment on the stability of the transistor operating point - that is, compute the change in emitter current when the nominal V_{BE} changes by ± 0.1 V due to device variability and/or ambient temperature.

Now let $R_L \rightarrow \infty$. What are the limiting swings now possible for v_o on the either side? To what value will you restrict the amplitude of v_s to get an undistorted sinusoidal output?

Problem 13

Take $V_{BE} = 0.6$ V nominally. Use the approximate equivalent circuit with $\frac{kT}{q} = 24$ mV and $\alpha = 0.99$. Calculate R_i and R_o for small signals.

In the large signal case, if v_o is to be free of distortion determine the maximum possible positive and negative value of the input waveform.

Design a circuit to get a gain of -2, independent of the device and free of distortion. $V_{omax} = 10$ V, with output being a sinusoid. The waveform of V_o hould just being to distort at both extremes. R_i should be in the range of 5 K, R_s is given to be 20Ω and R_L is 10K.

Problem 15

(Common Collector amplifier)

Calculate for small signals R_i , R_o and $\frac{v_o}{v_s}$. (Once again circuit analysis). Give the limits for R_i , R_o and the conditions to be satisfied to make gain independent of the device. What type of a controlled source does this amplifier act like when $g_m \to \infty$.

Problem 16

The transistor has very high β . With minimum possible V_{BB} and V_{CC} , the circuit should be able to handle the given drive of 5 V maximum amplitude. Calculate the values of V_{BB} and V_{CC} required.

When the 3 K lead is removed, determine the swing possible for v_o on either side, and the maximum amplitude to which v_s must now be restricted if v_o is to be a full undistorted sine wave. Take $V_{BE} = 0.7$ V, nominally. Assume all capacitances are large.

Problem 17

For small signals calculate R_i , R_o and $\frac{v_o}{v_s}$. The device has equivalent small signal y-parameters as follows : $y_{11} = 0.4 \text{ mS}$, $y_{12} = 0$, $y_{21} = 40 \text{ mS}$, $y_{22} = 25 \mu \text{S}$ These parameters are with emitter as common terminal.

Problem 18

 V_s is 6V. Calculate the values of V_{CC} and V_{ee} which will give a v_o waveform with distortion just commencing at positive and negative extremes.

With the values found for V_{CC} and V_{ee} , use the approximate equivalent circuit for the transistor and determine R_i , R_o and v_o/v_s for small signals. Take V_T = 25 mV, β = 199.

Problem 19

Calculate R_i and R_o ; the value of V_{CC} and V_{bb} which, with minimum input DC power to the stage, enable it to just handle the specified inout drive without distortion in v_o . Calculate also the small signal $\frac{v_o}{v_s}$. Take $V_{BE} = 0.7$ V nominally, $r_e = 20\Omega$, $\alpha = 0.992$ and $V_S = 10$ V. In all cases, take the inductance and capacitors to be very large in value.

Problem 20

All the coupling capacitors are very large in value. Take $V_T = 25 \text{ mV}$, $\alpha = 0.99$. Find for small signals R_i , R_{o1} as seen from the output terminal 1, R_{o2} as seen from output terminal 2, v_{o1}/v_s and v_{o2}/v_s .

For very small signals, find v_o/v_s with the proper sign. Take $V_{BE} = 0.65$ V, nominally, $V_T = 30$ mV, $\alpha = 0.995$ for all transistors. Also determine which transistor controls the upper limit of swing and which the lower one.

Problem 22

 $V_{BE} = 0.65$ V nominally. $V_T = 25$ mV. Calculate R_i for small signals. Also find the positive and negative limits for v_o if it is to be free from distortion. Take $\beta = 200$, $V_{CC} = 15.65$ V.

Problem 23 (COMMON BASE CONFIGURATION)

Calculate for small signals R_i , R_o and v_o/v_s . Give the limits for R_i , R_o and the conditions to be satisfied to make v_o/v_s independent of device and free of distortion even for large signal case. What type of a controlled source does this amplifier act like when $g_m \to \infty$?

Figure 1: Circuit for Problem 21

For small signals , find R_i and $R_o,$ given that r_{π} = 2 K, β = 200, r_o = 30 K

Problem 26

The input is a sine wave with V_S = 3.75V. To get an undistorted output sine wave within swing limits, Calculate V_{CC} and R.

If $V_T = 25 \text{ mV}$, $\beta = 200$, $r_o = 40 \text{ K}$, Calculate R_o . Take $V_{BE} = 0.65 \text{ V}$ nominally.