## EE2019–Analog Systems and Lab: Tutorial 7

Nagendra Krishnapura, Shanthi Pavan

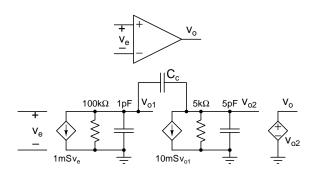



Figure 1: Circuit for problem 1

- 1. Fig. 1 shows the internal schematic of a Millercompensated opamp. This opamp is used to realize a unity gain, non-inverting amplifier.
  - What is the phase margin?
  - Determine  $C_c$  so that the phase margin is  $60^\circ$ .
  - If the same opamp is used without any change to realize an inverting amplifier of gain -4, what are the phase margin and the closed loop bandwidth?
  - Re-design the opamp (value of C<sub>c</sub>) so that when an inverting amplifier of gain -4 is realized using it, the phase margin is 60°. Compare the three cases wrt the following aspects:
    (a) Closed loop bandwidth, (b) phase margin,
    (c) phase lag contributed by the right-half-plane zero at the unity loop gain frequency.
  - Compare the bandwidths you obtain to the ones in the previous tutorial in which you simply increased C<sub>1</sub>.

While determining the unity loop gain frequency, phase margin, and  $C_c$ , do the calculations with and without the approximation  $C_c \gg C_{1,2}$ .

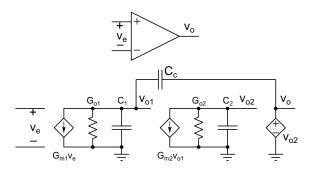



Figure 2: Circuit for problem 2

- 2. Determine the transfer function of the opamp in Fig. 2. How does it differ from the conventional Miller compensated opamp in the previous problem?
- It is common to approximate the unity loop gain frequency as ω<sub>u,loop</sub> ≈ L<sub>0</sub>p<sub>1</sub> where L<sub>0</sub> is the dc loop gain and p<sub>1</sub> is the dominant pole. If the loop gain is a second order function L(s) = L<sub>0</sub>/(1 + s/p<sub>1</sub>)(1 + s/p<sub>2</sub>), determine the exact unity loop gain frequency and the phase margin for the following cases: (a) p<sub>2</sub> = 4L<sub>0</sub>p<sub>1</sub>, (b) p<sub>2</sub> = 2L<sub>0</sub>p<sub>1</sub>, and (c) p<sub>2</sub> = L<sub>0</sub>p<sub>1</sub>. Compare them to the values obtained using the approximation above. L<sub>0</sub> ≫ 1.

(This approximation is very commonly used for hand calculations, but you should know how much error you end up with while doing so.)