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Abstract— Reconfigurable hybrid processor systems provide a
flexible platform for mapping data-parallel applications, while
providing considerable speedup over software implementations.
However, the overhead for reconfiguration presents a significant
deterrent in mapping applications onto reconfigurable hardware.
Partial run-time reconfiguration is one approach to reduce the re-
configuration overhead. In this paper, we present a methodology
to map data-parallel tasks onto hardware that supports partial
reconfiguration. The aim is to obtain the maximum possible
speedup, for a given reconfiguration time, bus speed and com-
putation speed. The proposed approach involves using multiple,
identical but independent processing units in the reconfigurable
hardware. Under non-zero reconfiguration overhead, we show
that there exists an upper limit on the number of processing
units that can be employed beyond which further reduction
in execution time is not possible. We obtain solutions for the
minimum processing time, the corresponding load distribution
and schedule for data transfer. To demonstrate the applicability
of the analysis, we present (a) various plots showing the variation
of processing time with different parameters, (b) hardware
simulations for two examples, viz., one dimensional discrete
wavelet transform and finite impulse response filter, targeted
to Xilinx FPGAs and (c) experimental results for a hardware
prototype implemented on an FPGA board.

Index Terms— Partial reconfiguration, dynamically reconfig-
urable logic, divisible load theory, hybrid processor architectures,
data-parallel tasks.

I. INTRODUCTION

RECONFIGURABLE systems use adaptive hardware to
address the varying needs of different applications [1].

The reconfigurable logic, generally a field programmable gate
array (FPGA), augments the functionality of a general purpose
processor (GPP). The current trend is to incorporate the
reconfigurable logic fabric (RF) on the same die as the GPP, to
alleviate the problem of communication overhead between the
GPP and the RF [2]. Despite the reduced communication over-
head in such hybrid processor architectures, one of the major
roadblocks to reconfigurable computing being adopted in the
mainstream has been the large delay associated with hardware
reconfiguration. Large reconfiguration times mandate the use
of applications with large computation times to amortize the
reconfiguration overhead.

In the literature, various techniques have been described
for reducing the reconfiguration delay overhead. These in-
clude configuration compression, configuration caching and
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prefetching, configuration relocation and defragmentation, uti-
lizing multiple contexts and using partial run-time reconfigu-
ration (RTR) [2]. Partial RTR (PRTR) allows for changing
the functionality of a portion of the RF area, while the
remaining area stays active in computation. PRTR has received
favourable attention in commercially available hardware im-
plementations [3], [4].

Partially reconfigurable hardware provides the framework
to compensate for large reconfiguration times. However, the
methodology for using this feature to reduce the execution
time of an application remains an open and active area
of research. Recent research comprises of static as well as
dynamic scheduling algorithms proposed for minimizing the
reconfiguration overhead in partially reconfigurable hardware
[5]–[9]. These techniques operate at the task/subtask level and
can be used for any application.

Among the various applications, signal/image processing,
multimedia and vision applications remain the most attractive
for implementation on reconfigurable systems [6], [7], [10].
These target applications comprise of tasks that operate on
large amounts of data and possess a high degree of data
parallelism [11]. For such tasks, it is possible to have multiple
independent processing units (PUs) operating on different parts
of the input data. Since the PUs operate independently, each
PU can start functioning as soon as the RF area allocated to
it is configured. This offers the potential to further minimize
the RF reconfiguration overhead and obtain greater degree of
acceleration [12], [13].

However, since the RF is part of a hybrid processor system,
the memory bandwidth available to the RF is usually limited.
RF access to memory generally occurs over a common bus that
connects the RF to the memory system and all PUs utilize this
bus for data access. Moreover, for a partially reconfigurable
system with a single configuration port, the PUs have to
be configured sequentially. Reconfiguration delay and limited
data bandwidth are therefore two main architectural constraints
present in a hybrid processor system. Since the PUs operate
on large amounts of data, careful data scheduling is required
in order to get the best possible performance. For example,
it is intuitively clear that the PUs that are configured earlier
should get a larger fraction of the total input, but it is not
clear what the optimum load fractions are. To get this, as well
as to determine the maximum speedup that can be obtained
under these constraints, a quantitative analysis of the system
is necessary.

In order to carry out the analysis, we have modified the
framework of divisible load theory (DLT) [14] to include
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partial reconfiguration. Our analysis gives us the solution for
1) The optimum number of PUs that are useful in getting

the largest speedup (n∗).
2) The actual processing time using n∗ PUs.
3) The corresponding load distribution.
In the analysis, we consider two general cases: (a) when

load transfer to a PU is not possible in parallel with PU
configuration / computation and (b) when load transfer to a
PU is possible when the PU is either undergoing configuration
or active in computation. Case (a) corresponds to the situation
“without front-end” and case (b) corresponds to the situation
“with front-end”, in DLT parlance [14]. The analysis itself is
quite general and does not assume anything about relative val-
ues of the reconfiguration time, bus speed or the computation
times. Therefore, it can also be used for multi-FPGA systems
in which the configuration is carried out sequentially.

The rest of the paper is organized as follows. In Sec-
tion II, we present the system architecture model used in our
analysis. Section III gives a background on DLT, as well as
the computation and communication model used. Section IV
provides a motivating example using the case of two PUs.
Section V provides a detailed analysis and the solution for
total processing time for m PUs. In Section VI, a discussion
of the analysis, its applicability and limitations are presented.
In Section VII, we present hardware simulation examples for
one-dimensional (1-D) discrete wavelet transform (DWT) and
Finite Impulse Response (FIR) filter, as well as details of
an experiment carried out on an FPGA board. Section VIII
contains the conclusions of this study.

II. SYSTEM ARCHITECTURE MODEL

The system considered is a hybrid processor architecture. As
mentioned in the previous section, a hybrid processor consists
of dynamically reconfigurable logic (DRL) coupled to a GPP.
The DRL portion of the hybrid processor is responsible for
the speedup achieved over a purely software implementation
of any computation task. In the literature, various schemes of
coupling between the DRL and the GPP have been reported.
These include close coupling as a function unit [15]–[17], as
a co-processor [18]–[21] and as a bus-mapped unit [22], [23].
In all of these schemes, different methods have been used to
provide data to the DRL. In some cases, DRL has access to
data through a memory hierarchy - either the GPP provides
the required data [16]–[18] or data is fetched by the active
units on the DRL [19]. In other cases, the DRL has direct
access to memory through a common bus [15], [20]–[23].
In this paper, it is assumed that the DRL has direct access
to memory through a common bus. This loosely coupled
architecture allows many local memory banks to be associated
with the DRL and is therefore more suitable for data-parallel
applications [24].

Fig. 1 shows the system architecture model. If the DRL is
a slave, data transfer to the DRL is initiated and performed
by a controller that performs direct memory access (DMA).
The DMA controller is a bus master that fetches data from
memory and sends it to the PUs. If the DRL is a bus master,
the data transfer is performed by the PUs themselves, in which

DMA
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(bus master)
Main

Memory
Memory

(bus slave)
Controller

RAMRAMRAM controller
Configuration

store
Config

Configuration busDRL Registers
Control

GPP

Shared data bus

p1 p2 pm

Fig. 1. Architecture model used for analysis of the hybrid processor
architecture (a modified version of that presented in [25]). The block “GPP”
includes the main processor as well as its associated cache.

case a memory controller interfaces to the main memory. The
memory controller is a bus slave which accepts requests from
any bus master and provides the requested data from memory.
The GPP is also a bus master ; it typically controls the various
operations and might also perform some tasks which are not
mapped to the RF.

The DRL can be configured to accommodate m PUs,
p1, . . . ,pm. Each PU has a local RAM required for storing
data. This is similar to distributed memory multiprocessor
architectures. Image processing and computer vision applica-
tions can be efficiently mapped onto such architectures [26].
The local RAM could either be an external SRAM [27] or the
BlockRAMs present in Virtex FPGAs from Xilinx. The local
RAM of all the PUs are a part of the GPP address space and
therefore accessible by the GPP.

Reconfiguration of the DRL is under the control of a
configuration controller (CC). The CC is programmed by the
GPP to perform the required sequence of reconfigurations.
The configuration data is typically stored in Flash memory,
whose contents can be changed by the GPP whenever neces-
sary. The starting address and size of configuration data is
programmed into control registers in the CC by the GPP,
before application execution begins. This is possible since
the configuration strategy is determined off-line. The CC is
therefore quite simple, compared to the CC model described
in the literature earlier [28]. As shown in Fig. 1, there is a
separate configuration bus. For the analysis, we have ignored
the overheads due to GPP control commands and the bus
protocol. This is a good approximation since this overhead
is typically small for a large input data size.

Before a quantitative analysis of the described system is
carried out, we need to define the model for data computation
and communication. Since this is based on DLT, we first
present a brief background on DLT.

III. BACKGROUND ON DLT AND MODEL FOR
COMPUTATION AND COMMUNICATION

DLT has its origins in the paper by Cheng and Rober-
tazzi [29], which was motivated by the requirement for pro-
cessing large amounts of data in distributed intelligent sensor
networks. DLT concerns itself with the analysis of parallel and
distributed systems using linear models for data computation
as well as communication, with the objective of obtaining the
minimum possible processing time. In general, the theory can
be applied to data-parallel tasks that operate on large amounts
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of data. The following basic assumptions form the foundations
of DLT:

1) The application load is arbitrarily divisible and the
different load parts can be processed independently,
without any precedence constraints.

2) The time required for data transfer to any processing unit
is linearly proportional to the amount of data transferred.

3) The computation time at each processing unit increases
linearly with the amount of data processed.

These assumptions hold good in a variety of applications, in-
cluding signal / image processing and vision applications [30]
and form the basis of our computation and communication
model.

The notation that we use for our computation and commu-
nication model is given below. For convenience, this is the
same as the notation used in [14] and [31]. The standard PU
and the standard bus are those which are used as reference.
These are “conveniently defined fictitious units” (quoted from
[14]).

Tcp : Time taken to process entire load by a standard
PU.

Tcm : Time taken to transfer entire load on a standard
bus.

w : A constant that is inversely proportional to the
speed of a PU. Each PU can process the entire load
in duration wTcp.

z : A constant that is inversely proportional to the
speed of the data bus. The entire load can be
transferred over the bus in a duration zTcm.

αi : Fraction of total load assigned to PU pi.
Ti : The finish time of PU pi. This corresponds to the

instant pi finishes computing its allocated load.
Tf (m) : The optimum processing time for m PUs, defined

as max (T1, T2, . . . ,Tm).
From the definitions above, it is clear that the standard PU
has w = 1, while the standard bus has z = 1. Even though
in practice we deal only with the quantities wTcp and zTcm

instead of w and z, w serves as a way to compare PUs with
different speeds, whereas z can be used to compare buses with
different speeds or bandwidths.

In addition to the notation presented, we use
Tr : Time taken to configure / reconfigure a single PU in

the DRL. In this paper, we use the terms configure and
reconfigure interchangeably.

As explained previously, given m PUs, we need to find the
optimum load distribution so that the overall processing time
is minimized. This can be expressed as:

Tf (m) = min
α ε{A}

(max (T1, T2, . . . ,Tm)) (1)

Here, {A} is the set of all possible load distributions. Given
αi, i = 1, ..m (i.e. a particular load distribution), each of the
PUs finish in times T1, T2, . . . ,Tm. The finish time for the task
is max(T1, T2, . . . ,Tm). The above equation indicates that we
need to find the load distribution that gives the minimum finish
time. In [32], it has been proved that for bus networks, the
solution to the problem above gives the condition that all PUs

tt
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(b) Partial reconfiguration, small Tr

T1 = Tr + α1zTcm + α1wTcp

T2 = 2Tr + zTcm + α2wTcp T2 = Tr + zTcm + α2wTcp

T1 = 2Tr + α1zTcm + α1wTcp

(a) Full reconfiguration

Fig. 2. Timing diagram of load distribution, for the case of full reconfigu-
ration and partial reconfiguration with small Tr . The label ‘Bus’ corresponds
to the data bus. During partial reconfiguration, the PUs are configured one
by one. In both cases, α1 + α2 = 1 and Tf (2) = T1 = T2 as explained in
Section III .

stop computing at the same time, i.e., T1 = T2 = · · · = Tm.
This can be explained intuitively as follows. If any one of the
PUs completes execution earlier, it is possible to allocate more
load to that PU and thus achieve a smaller overall processing
time.

The normalization equation for the load is:
m

∑

i=1

αi = 1 (2)

Using the notations given in this section, the time taken to
transfer a load fraction αi to pi is αizTcm while the time
taken by pi for processing it is αiwTcp. Under the linearity
assumption, the ratio of the processing time of a load to the
time taken to transfer the load over the bus, is a constant for
a given task:

σ =
wTcp

zTcm

(3)

The computation and communication model considered
provides a tractable model for determining the solution for
processing time [33]. However, reconfiguration introduces an
additional dimension to the analysis using DLT. In fact, we
show that there is also an upper limit to the number of PUs
that are useful in computation. This is demonstrated with the
help of a motivating example in the next section.

IV. MOTIVATING EXAMPLE

We consider the case when there are two PUs of equal
speed to be configured in the DRL (m = 2 in Fig. 1). Let us
consider the case without front-end. We need to determine the
configuration sequence and load distribution to the PUs such
that the processing time is optimum. We have two options for
distributing the load:

1) Using full reconfiguration: In this case, the strategy
is to first configure both the PUs by adopting full
reconfiguration of the DRL. This is followed by optimal
load distribution. This situation, shown in Fig. 2(a), is
the same as the situation in DLT literature [32], except
for an overhead of 2Tr for reconfiguration. Since the
PUs finish simultaneously, we can equate T1 and T2
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to get one equation in α1 and α2. The normalization
equation (2) with m = 2 gives us another equation.
These two equations are enough to solve for the two
unknowns (load fractions) α1 and α2:

α1 =
zTcm + wTcp

zTcm + 2wTcp

=

(

1 + σ

1 + 2σ

)

(4)

α2 =
wTcp

zTcm + 2wTcp

=

(

σ

1 + 2σ

)

(5)

where σ is given by (3). The optimum processing time
is Tf = 2Tr + α1(zTcm + wTcp), which is

Tf (2) = 2Tr +
(1 + σ)2

1 + 2σ
zTcm (6)

If we use partial reconfiguration, it is possible to initiate
load transfer as soon as one of the PUs is configured. Us-
ing partial reconfiguration will therefore give a smaller
processing time. This is now analyzed.

2) Using partial reconfiguration: The strategy adopted here
is to partially reconfigure the DRL to accommodate
p1, followed by partial reconfiguration to accommodate
p2. As soon as p1 is configured, load transfer to p1

is initiated. Load transfer to p1 is done in parallel
with configuration of p2. The load distribution however
depends on the value of the reconfiguration time Tr.
The different cases are considered separately in the
subsections that follow.

A. Small Tr

If the configuration time Tr is sufficiently small, it is
possible for the configuration of p2 to be completely hidden
in the load transfer time for p1. This situation is shown in
Fig. 2(b). The configuration of p2 does not affect the load
distribution. Therefore, the load fractions are same as that
for the full reconfiguration case given by (4) and (5). The
optimum processing time is now given by Tf (2) = T1 =
Tr + α1(zTcm + wTcp), i.e

Tf (2) = Tr +
(1 + σ)2

(1 + 2σ)
zTcm (7)

This is smaller than that for full reconfiguration by an amount
equal to Tr. The configuration time of p2 will be hidden as
long as Tr ≤ α1zTcm, which gives the condition

Tr ≤

(

1 + σ

1 + 2σ

)

zTcm (8)

for (7) to hold true.

B. Large Tr

We now consider the case when Tr is so large that (8) is
violated. If the same load fractions are used, p2 will not be
ready (configured) to accept data immediately after the load is
delivered to p1. One possible scheme is to feed as much data
as possible to p1 till p2 becomes ready, followed by transfer

t
Bus
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T1
α1wTcp

α2zTcm
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Tr T2
α2wTcp

α1zTcm

(a) Large Tr , suboptimal

t
Bus

p1

p2

Tr

Tr

θ

α1wTcp

α2wTcp

α1zTcm α2zTcm

T1

T2

(b) Large Tr , optimal

Fig. 3. Different options when reconfiguration time is large [ (8) is violated ].
Option (a) is suboptimal since some load allocated to p1 can be transferred to
p2 ( as shown in (b) ), to achieve smaller processing time Tf (2) = T1 = T2.

of the remaining load to p2. In this case, α1zTcm = Tr and
the finish times of the PUs are given by

T1= Tr + α1zTcm + α1wTcp = (2 + σ)Tr (9)
T2 = 2Tr + α2zTcm + α2wTcp

= (1 − σ)Tr + (1 + σ)zTcm (10)

The simplifications in terms of σ are based on α1zTcm = Tr

and α1 + α2 = 1. Since (8) is violated, (9) and (10) indicate
that T1 > T2. This is shown in Fig. 3(a). The situation depicted
in this timing diagram is valid as long as Tr < zTcm.

However, since T1 > T2, the processing time can be reduced
by transferring a portion of load meant for p1, to p2. This
means that some portion of the reconfiguration time of p2 will
be uncovered, giving rise to an idle time, θ, on the data bus.
The situation is depicted in Fig. 3(b). Clearly, data transfer to
p2 must begin as soon as the configuration of p2 is over, to
ensure minimum processing time. For the situation shown in
Fig. 3(b), the expressions for finish times of the PUs are:

T1 = Tr + α1(zTcm + wTcp) (11)
T2 = 2Tr + α2(zTcm + wTcp) (12)

Using the normalization equation (2) with m = 2 and equating
T1 and T2, we get the following expressions for the load
fractions and optimum processing time :

α1,2 =
1

2
±

(

1

1 + σ

)

Tr

2zTcm

(13)

Tf (2) =
3Tr

2
+

(

1 + σ

2

)

zTcm (14)

As Tr becomes larger, α1 increases and α2 decreases. Even-
tually, when Tr = (1 + σ)zTcm, α2 = 0 and α1 = 1. This
essentially means that the entire load can be processed by one
PU and the second PU becomes unnecessary. The processing
time using a single PU is

Tf (1) = Tr + zTcm + wTcp = Tr + (1 + σ)zTcm (15)

For all values of Tr larger than (1 + σ)zTcm, it is clear
that Tf (1) < 2Tr. This means that a single PU can finish
processing the entire load before p2 is configured. Therefore,
it is not useful to have more than one PU and the optimum
number of PUs is one.

The case of two PUs demonstrates that the optimal load
distribution scheme can be different for different values of the
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reconfiguration time Tr. Choice of a particular load distribu-
tion as well as the number of PUs must be made depending
on the value of Tr. In the next section, we extend the analysis
for m PUs, where m is the maximum number of PUs that can
be accommodated within the RF.

V. ANALYSIS WITH m PROCESSING UNITS

For the system considered in Section II, the analysis is
carried out for two cases - case without front-end and the
case with front-end. These are now considered.

A. Without front-end
This case is similar to the one considered in the example in

the previous section. Load transfer is not possible to a PU in
parallel with configuration or computation. This analysis can
be used for architectures that satisfy the following conditions.

1) Either (a) the PUs are slaves and the DMA controller
cannot directly access the RAM within a PU before
configuration of the PU i.e, the PU contains the interface
between the RAM and the data bus, or (b) the PUs
are bus-masters and hence fetch data from memory
by themselves. Therefore, data transfer is not possible
before configuration of the PU.

2) Either (a) the RAM associated with each PU is single-
ported, or (b) the RAM associated with each PU is
multi-ported, but the PUs are designed so that all the
ports are occupied during computation. Therefore, data
data transfer to a PU is not possible while it is busy
with computation. Efficient pipelined implementations
of data-parallel tasks normally use multiple input and
output streams [11], where each data stream corresponds
to a dedicated RAM port.

The PUs are configured one after the other, in the order
p1, . . . ,pm. We saw in the previous section that all the avail-
able PUs may not contribute towards the optimal solution.
Let the number of PUs that participate in computation be
n (n ≤ m). Since the PU speeds are identical, the load
fractions decrease monotonically from p1 to pn to ensure
that all PUs stop computing simultaneously. Depending on the
relative values of Tr and the load fractions, it is possible that
the reconfiguration time is hidden by the load transfer time for
some or all of the PUs (except p1). Let the reconfiguration time
be hidden for the PUs p2, . . . , pq and let the reconfiguration
of pq+1 be exposed by an idle gap on the data bus after load
transfer to pq. Fig. 4 shows this for the specific case of n = 6
and q = 3. Since no gap occurs after load transfer to PUs
p1, . . . , pq−1, we have the following relations:

Tr ≤ α1zTcm

2Tr ≤ (α1 + α2)zTcm

...

(q − 1)Tr ≤

q−1
∑

i=1

αizTcm (16)

tBus

p1

p2

p3

p4

p5

p6

TrTrTrTrTr Tr

T2

T1

T4

T5

T6

T3

α5zTcmα4zTcmα1zTcm α2zTcm α3zTcm

α1wTcp

α2wTcp

α3wTcp

α4wTcp

α5wTcp

α6wTcp

α6zTcm

Fig. 4. Timing diagram for case without front-end: n = 6 and q = 3.

Among these, the last equation is the most restrictive, since
αi values monotonically decrease with i. Also, since a gap
occurs after load transfer to pq , we have

qTr >

q
∑

i=1

αizTcm (17)

From (16) and (17), we can see that αqzTcm < Tr. Since the
load fractions are monotonically decreasing, we also have,

αizTcm < Tr, i = (q + 1), . . . ,n (18)

To ensure minimum possible processing time, load transfer
to pq+1 must start immediately after configuration. It follows
from (18) therefore, that a bus idle gap exists after load transfer
to pq+1. Similarly, idle gaps exist after load transfer to each
of the PUs pq+2, . . . ,pn−1. This is depicted in Fig. 4. From
the timing diagram in Fig. 4, the finish times of the PUs can
be written as

Ti =















Tr +





i
∑

j=1

αj



 zTcm + αiwTcp, i = 1, . . . ,q

iTr + αi(zTcm + wTcp), i = (q + 1), . . . ,n
(19)

Equating finish time for the first q PUs, we have Ti = Ti−1

for i = 2, . . . ,q, which gives

αi−1wTcp = αizTcm + αiwTcp, i = 2, . . . ,q (20)

Using (3) and (20), we get

αi =

(

σ

1 + σ

)

αi−1 = καi−1 (21)

where κ =
wTcp

wTcp+zTcm

= σ
σ+1 is the fraction of time spent

in computation. We refer to κ as the PU speed factor. From
(21), we get

αi = κi−1α1, i = 2, . . . ,q (22)

Equating the finish times for the remaining PUs, we have Ti =
Tn for i = (q + 1), . . . ,(n − 1), which gives

αi = αn + (n − i)(1 − κ)

(

Tr

zTcm

)

,

i = (q + 1), . . . ,(n − 1) (23)
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Using T1 = Tn, we can relate the load fractions α1 and αn

as
α1 = αn + (n − 1)(1 − κ)

Tr

zTcm

(24)

Using the normalization equation (2) for n PUs and substi-
tuting for αi from (22) and (23) and using (24), αn can be
written as

αn =
1 − (1 − κ)

[

(n−q−1)(n−q)
2 + (n − 1)

(

1−κq

1−κ

)]

Tr

zTcm

(

1−κq

1−κ

)

+ (n − q)

(25)
Using (24) and (25), the expression for α1 is

α1 =
1 + (n − q)(n + q − 1)(1 − κ)

Tr

2zTcm
(

1 − κq

1 − κ

)

+ (n − q)

(26)

The optimum processing time is given by

Tf (n) = Tr + α1(zTcm + wTcp) (27)

where α1 is given by (26). The value of q in (26) can be
obtained as follows. The reconfiguration time Tr must satisfy
(16) and (17). Therefore, we can combine (16) and (17) to get

1

q

q
∑

i=1

αizTcm < Tr ≤
1

q − 1

q−1
∑

i=1

αizTcm (28)

Let us now consider the inequality

Tr >
1

p

p
∑

i=1

αizTcm (29)

where p ≤ q. In the inequality above, αi is a function of Tr.
Substituting for αi using (22) and using the expression for α1

from (26), the above inequality reduces to

Dn(p, q) Tr > Nn(p, q) zTcm (30)

where Nn(p, q) =
(

1−κp

1−κ

)

and

Dn(p, q) =

[

p

{(

1 − κq

1 − κ

)

+ (n − q)

}

−
(n − q)(n + q − 1)(1 − κp)

2

]

(31)

Now substituting p = q in (30) will give left hand side of
(28). Reversing the inequality and using p = q−1, we get the
right hand side of (28). Therefore, (28) can be written as the
following two relations

Dn(p, q) Tr > Nn(p, q) zTcm, p = q (32)
Dn(p, q) Tr ≤ Nn(p, q) zTcm, p = q − 1 (33)

Tr must satisfy both these conditions for q ∈ {2, . . . , n − 1}.
For the case q = n (no gaps), the lower limit on Tr implied by
(32) is not necessary, whereas for q = 1 (gaps after each PU
load transfer), the upper limit on Tr indicated by (33) is not

1: Compute Tf (1) using (15).
2: if Tf (1) ≤ 2Tr then
3: {Single PU finishes before p2 is configured. Therefore n∗ = 1. }
4: n← 1, α1 ← 1, q ← 1. Exit ;
5: end if
6: {Since Tf (1) > 2Tr , n∗ > 1. Search for n∗}
7: for n = 2 to m do
8: { For each n, perform a search for the value of q }
9: for q = 1 to n do

10: if If Tr satisfies (34) for current value of q then
11: break ;
12: end if
13: end for
14: Compute αi (i = 1, . . . ,n) using (22), (23), (25) and (26).
15: Compute the processing time Tf (n) using (27).
16: if Tf (n) ≤ (n + 1)Tr then
17: { Load is processed before pn+1 is configured. Therefore, current

n is n∗}
18: Exit ;
19: end if
20: end for

Fig. 5. Without front-end: Algorithm to determine maximum number of
PUs n that can take part in computation, out of the m available PUs. The
corresponding value of q, load distribution and processing time are also
obtained.

necessary. We can therefore write down the conditions that Tr

must satisfy for different values of q:










Dn(n − 1, n) Tr ≤ Nn(n − 1, n) zTcm, q = n

(32) and (33), q = 2, . . . ,n − 1

Dn(1, 1) Tr > Nn(1, 1) zTcm, q = 1
(34)

We must choose the value of q such that Tr satisfies the
appropriate condition for the selected q, as given by (34). Once
q has been determined, we can compute the load fractions αi

using (22), (23), (25) and (26). The optimum processing time
can then be computed using (27). It may be noted that the
intervals of Tr, implied by (34) for different values of q, abut
each other and therefore span a contiguous range of possible
values of Tr. This is clear from the fact that

Dn(q − 1, q) = Dn(q − 1, q − 1), q = 2, . . . ,n

Nn(q − 1, q) = Nn(q − 1, q − 1), q = 2, . . . ,n

With a non-zero reconfiguration time Tr, it is possible
that all the m available PUs are not used for computation.
In fact, if the processing time using n < m PUs is less
than or equal to the time instant pn+1 becomes ready for
computation, we can be sure that pn+1 (and the remaining
PUs) cannot contribute towards reducing the processing time.
This can be used to determine the maximum number of PUs
that are useful. The procedure is given in Fig. 5. The algorithm
performs two searches – for q and for n∗. In the worst case,
q = n, ∀n = 1, . . . ,m and n∗ = m, in which case the
algorithm runtime complexity is O(m2). The algorithm is run
off-line, before the start of application execution, and the value
of n∗ and load fractions are determined beforehand.

We now define two quantities, the normalized processing
time φ and the normalized reconfiguration time ρ :

φ =
Tf (n)

zTcm

, ρ =
Tr

zTcm

(35)
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Fig. 6. Plot of the normalized processing time φ for the case without front-
end. Fig.(a) shows the variation with different number of PUs used, with each
curve for a different value of reconfiguration time. Fig.(b) shows the variation
with the PU speed factor κ. Each curve (for a particular n) is plotted only
for those values of κ for which a solution exists, i.e n ≤ n∗.

In Fig. 6(a), the plot of the normalized processing time φ
with respect to the number of PUs utilized, is shown for
κ = 0.94. This is the value of κ for one of the examples
described in Section VII. From Fig. 6(a), we can see that the
processing time reduces with an increase in the number of
PUs. For a given ρ, there exists a maximum number of PUs
n∗, beyond which it is not possible to get a further reduction
in the processing time. Therefore, for minimum processing
time, one must use n∗ PUs in the system. Also, it can be
seen that for a fixed PU speed, the processing time increases
with ρ, which is as expected. Also, as expected, the number of
useful PUs increases as ρ decreases. In the limit when Tr → 0,
the theory is identical to the conventional DLT and Tf keeps
reducing monotonically with the number of PUs, with no limit
on the maximum number of PUs.

A plot of the variation of the normalized processing time
with the the PU speed factor κ is given in Fig. 6(b). κ → 1
as wTcp → ∞ and κ = 0 when wTcp = 0. We can see that
the processing time increases with κ, as expected. Each curve
in the plot is for a particular value of number of PUs n used.
The curves (each for fixed n) are plotted only for those values
of κ which give a valid solution, i.e n ≤ n∗. We can see from
Fig. 6(b) that solution with more PUs exists only for slower
PUs, i.e for large κ. This is as expected.

B. With front-end

Here, we consider the case when data transfer to a PU is
possible while it is being configured or while it is performing
computation. This analysis can be used for architectures that
satisfy the following conditions.

1) The PUs are slaves and the DMA controller has access
to the RAM associated with a PU even before the PU
is configured. This is possible if a fixed interface is
provided between the RAM and the data bus and the
RAM is external to the PU.

2) The RAM associated with each PU has a minimum of
two ports. If the RAM is dual-ported, one port can be
utilized for data input / output during PU computation,
while the other port can be used by the DMA controller
to transfer data to the RAM in parallel. If the RAM
is multi-ported, the PUs are designed so that during
computation, one RAM port is left free to allow for load
transfer.

The situation considered here is a special case of the
general situation of processors with arbitrary release times
on a bus network considered in [31]. The release times
correspond to the time instants when the PUs are ready to
start computation, i.e., after the PUs are configured. All the
different cases that need to be considered have been treated
exhaustively in [31]. We have made some improvements to the
solution presented in [31], which results in a slightly different
scheduling algorithm from the one proposed in [31]. For the
sake of completeness, we present the complete analysis. Our
contributions are pointed out wherever applicable.

Using the notation in [31], the release time of PU pi is
denoted as ti. In our case, the release times ti of the PUs
correspond to the time they are ready for computation, after
configuration. If the PUs are each configured successively, the
release times are

ti = iTr, i = 1, . . . ,m (36)

Depending on the value of Tr, there are two cases to be
considered:

Case 1 (zTcm ≤ Tr):
All the load is transferred before the first PU is configured.
The entire load is processed in a single installment. Let n be
the number of PUs that participate in computation, to give a
minimum finish time. As derived in [31], the load fractions
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(b) zTcm > Tr

Fig. 7. Timing diagram for computation of first installment, for the two cases
of value of Tr relative to zTcm. n1 ≤ m PUs participate in computation.
The subscript 1 in n1 indicates that it is the first installment.

1: for n = m to 1 do
2: Compute αn using (37) (Case 1) or (39) (Case 2).
3: if αn > 0 then
4: Exit ;
5: end if
6: end for

Fig. 8. Algorithm to determine n, the number of PUs that can participate
in computation, for Case 1 as well as Case 2.

and optimum processing time are given by

αi =
1

wTcp





1

n







wTcp +

n
∑

j=1

tj







− ti



 ,

i = 1, . . . ,n, n ≤ m (37)
Tf (n) = t1 + α1wTcp (38)

where ti is given by (36). The timing diagram is shown in
Fig. 7(a). The number of PUs that participate in computation
is determined based on the fact that the load fraction values
should be positive quantities. Knowing that the load fractions
decrease monotonically, it is enough to check for αn > 0.
The iterative procedure to determine n is described in [34],
presented here in Fig. 8. As before, the value of n obtained
will satisfy Tf (n) < (n + 1)Tr.

Case 2 (zTcm > Tr):
In this case, the load is delivered in multiple installments and
the load distribution strategy is as follows. First, as much load
as possible is transferred to the PUs within duration Tr. This
forms the first installment. The load fractions and finish time
for the first installment, as derived in [31], are

αi =
1

wTcp





1

n







t1wTcp

zTcm

+

n
∑

j=1

tj







− ti



 ,

i = 1, . . . ,n, n ≤ m (39)
Tf (n) = t1 + α1wTcp (40)

where ti is given by (36). The number of PUs n that participate
in processing the first installment is obtained using the algo-
rithm in Fig 8. For the purpose of discussion, let us denote the
number of PUs utilized in the ith installment as ni. All the n1

PUs finish computation of the first installment at time Tf (n1).
During computation, the second installment is loaded in the

(Identical
release time)

Bus t

t0

p1

p2

p3

L1zTcm

τ

zTcmtc

Tr 3Tr2Tr

L∞zTcm

fzTcm

installmentss

(a) The special case

Bus

t0 teff

p1

p2

p3

τ

tc zTcm

θ

C

fzTcmA

D

B

installmentss E

(b) The proposed solution

Fig. 9. Special case for m = 3. As shown in Fig.(a), it is not possible for the
PUs to consume all the load. Fig. (b) shows the proposed solution for k0 = 4,
where A, B, C, D and E are respectively Ls+1zTcm, Ls+1wTcp/n,
Ls+k0

zTcm, Ls+k0
wTcp/n and fwTcp/n.

RAM for a duration equal to min (Tf (n1), zTcm) − Tr. For
the second installment, the release times of the participating
PUs is given by

ti =

{

Tf (n1), i = 1, . . . ,n1

iTr, i = (n1 + 1), . . . ,n2

(41)

If Tf (n1) ≥ zTcm, only two installments are sufficient to pro-
cess the entire load. The optimum processing time is Tf (n2).
The situation is similar to Case 1 and the same procedure
is used to obtain the load fractions and finish time. On the
other hand, if Tf (n1) < zTcm, more than two installments
are needed to process the entire load. The load fractions and
finish time for the second installment are obtained in the
same manner as the first installment of Case 2. The process is
continued using as many installments as required, till all the
load is consumed.

Consideration of a special case: Let us consider a situation
when the number of participating PUs n becomes equal to m
(maximum possible number of PUs) after s − 1 installments.
Then, after s installments, the PUs will have identical release
times for all the remaining installments. In this case, using
(39) and (40) with identical ti’s, it turns out that the load is
distributed equally among all the n(= m) PUs. If Lj is the
load fraction distributed in the jth installment (j > s), the
execution time for the installment is LjwTcp/n. As before,
the next installment (Lj+1zTcm) is distributed during this
duration. Therefore, we have Lj+1zTcm = LjwTcp/n which
can be written as

Lj+1 = Ljγn, j > s (42)

where γn = wTcp/(nzTcm). If γn < 1, the successive load
fractions keep reducing. In this case, there is one difficulty.
This is when the load fractions reduce to an infinitesimally
small value before all the load is consumed. This scenario is
depicted in Fig. 9(a) for m = 3. In the figure, tc corresponds to
the time duration for the first s installments. After processing
s installments, the PUs have an identical release time t0. The
load remaining after distributing s installments is fzTcm, f <
1. In the situation depicted, it is not possible to consume all
the remaining load fzTcm. This is mathematically captured as

t0 + [Execution time for load fzTcm using n PUs] ≤ zTcm

(43)
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which can be written as

t0 + f
wTcp

n
≤ zTcm (44)

Denoting τ = (t0 − tc) (Fig. 9(a)), the above equation can be
rewritten as

τ ≤ fzTcm(1 − γn) (45)

We shall refer to the situation when (45) holds as the special
case. In [31], a heuristic solution for the special case is
presented, wherein the processor execution is delayed by a
duration δ = zTcm − τ(1 + γn) so that the entire load can be
processed in two installments. When this heuristic is used, the
processing time does not always decrease monotonically with
increase in the number of PUs utilized. An example when this
occurs is for κ = 0.8 and ρ = 0.1, shown in Fig. 10 (dashed
line). This type of behaviour of processing time is undesirable.

We present an improved solution for the special case, based
on a multi-installment strategy. This is depicted in Fig. 9(b).
The basic idea of delaying PU execution is the same as in [31].
Let the idle time of the PUs be θ. Then the effective release
time is teff = t0 + θ. From Fig. 9(b), the total load fraction
delivered in the (s + 1)th installment to all PUs is

Ls+1 =
τeff

zTcm

, (46)

where
τeff = τ + θ = teff − tc (47)

As before, the execution time for jth installment is LjwTcp/n
for j > s. We fix the total number of installments to s + k0

and then choose τeff such that only the last installment
computation occurs after the time instant zTcm. That is,

teff +

s+k0−1
∑

j=s+1

Lj

n
wTcp = zTcm (48)

The load installments are still related by (42), which gives

Lj = Ls+1γ
j−(s+1)
n , j = (s + 1), . . . ,(s + k0) (49)

1: tc = 0, σ = wTcp/(zTcm), ti = iTr for i = 1, . . . , m
2: Choose k0 � 1.
3: while t1 < zTcm do
4: Obtain n using algorithm in Fig. 8 (Case 2)
5: if t1 = · · · = tn then
6: τ ← t1 − tc, f ← 1− tc/(zTcm), γn ← σ/n
7: Check for special case using (45).
8: if special case then
9: Use the proposed solution for special case with k0 installments.

Load distribution and Tf (n) are given by (46)-(51). Exit ;
10: end if
11: end if
12: Obtain load distribution and Tf (n) for a single installment using

Case 2.
13: tc ← tc+ Duration of load installment
14: ti = Tf (n), i = 1, . . . ,n
15: end while
16: Obtain n using algorithm in Fig. 8 (Case 1)
17: Obtain load distribution and Tf (n) for last load installment using Case 1.

Exit ;

Fig. 11. With front-end: Complete algorithm for determining the load
distribution and processing time.

Using (46), (47), (48) and (49), we get

τeff =
fzTcm



1 +

k0−1
∑

j=1

γj
n





(50)

The PU idle time θ is then τeff − τ . The execution time for
processing the load fzTcm is fwTcp/n. The finish time is
therefore given by

Tf (n) = tc + τeff +
fwTcp

n
(51)

Fig. 9(b) shows the proposed solution for m = 3 and
k0 = 4. As described earlier, the special case occurs when
γn < 1. Therefore, equations (50) and (51) indicate that
Tf (n) → zTcm when k0 → ∞. In other words, one can
achieve a finish time as close to zTcm as desired, by choosing
an appropriately large value of k0. For an infinitely large
number of installments, the proposed solution is optimum,
since the finish time cannot possibly be reduced below zTcm

in any load distribution scheme.
The special case can also occur when n < m. This is

possible if computation times are small and the load fractions
tend to zero even before pn+1 is configured. However, as
long as the condition for special case (45) holds, we need
not consider any additional PU, since it is possible to get a
finish time close to zTcm with our multi-installment strategy.
If n is small, τeff and ko can be adjusted to get a finish time
as close to zTcm as desired.

The complete solution procedure is given in Fig. 11. The
algorithm runtime complexity depends on the number of load
installments, which in turn depends on the values of Tr,
zTcm, wTcp and m. In the algorithm in Fig. 11, we have not
considered the case when Tr = 0, since zero reconfiguration
time does not occur in practice. For the special case, it was
observed that a value of k0 = 20 is generally sufficient to get
good results. This is depicted in Fig. 10 (solid line) for the
case κ = 0.8 and ρ = 0.1. As desired, the processing time
decreases monotonically with the number of PUs utilized.
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Fig. 12. Plot of the normalized processing time φ for the case with front-
end. Fig.(a) shows the variation with different number of PUs used, with each
curve for a different value of reconfiguration time. Fig.(b) shows the variation
with the PU speed factor κ. Each curve (for a particular n) is plotted only
for those values of κ for which a solution exists, i.e n ≤ n∗.

Fig. 12(a) shows the plot of variation of the normalized
processing time with the number of PUs utilized. As in the
case without front-end, there exists an optimal number of PUs
n∗. Also, like the previous case, n∗ increases as ρ decreases.
A plot of the variation of φ with κ is shown in Fig. 12(b). As
in the no-front-end case, the processing time increases with κ.
Again, more number of PUs can be used for larger values of
κ.

VI. DISCUSSIONS

Our analysis gives us the optimum load fractions as well as
the maximum number of useful PUs, for a given reconfigu-
ration delay and computation speed relative to the bus speed
(ρ and σ). This data can be used in two ways. Given an area
constraint for the DRL, it is possible to know the maximum
number of PUs m that can be accommodated in the DRL. If

m ≥ n∗, our analysis shows that we need to use only n∗ PUs
and some of the DRL area will remain unused. If m < n∗,
it is possible to get the finish time using our analysis, but it
will not be the best possible speedup that can be obtained
for the given values of ρ and σ. Alternatively, if we want a
certain finish time, it is possible to use this analysis to find
the minimum area required to get the required finish time. For
example, if we want 8 < φ < 10 with ρ = 0.5 and κ = 0.94 in
a “No front-end” architecture, it can be seen from Figure 6(b)
that we need not use more than 2 PUs. This information can
be used within any task based scheduler to get an optimized
schedule.

The analysis presented in the previous section assumes that
after processing, the PU output result data remains within the
local memory. Since the local memory is part of the overall
memory address space, the output data can either be used by
the GPP or by a subsequent task to be performed within the
DRL or by any other peripheral. In this case, there is no need
to transfer the data to external memory. However, the analysis
will not be valid if the DRL has to be completely reconfigured,
immediately after the PUs finish execution, to perform another
task that requires the local memory. In this case, we need to
transfer data from the local memory to external memory. For
such a situation, the analysis presented in this paper will not
give the optimum finish time. The result transfer time must
then be taken into consideration along with a bus bandwidth
constraint. The details of this analysis are given in [35] and
[36].

Fig. 13 shows the variation of the minimum processing time
as well as the corresponding value of n∗, with change in the
load transfer duration zTcm. The figure shows it for both cases,
i.e with and without front-end. For the front-end case, we have
set k0 = 20. The chosen value of κ = 0.77 is for the FIR filter
example to be discussed in Section VII. The load duration can
increase either as as result of increase in the input data size
or due to a reduction in the data bus bandwidth. As the load
duration increases, it is possible to use more PUs in the case
without front-end, to get an optimum processing time. This is
however not the case with front-end, since beyond a certain
point, the special case comes into play, which eliminates the
need for additional PUs to reduce the processing time.

From Fig. 13, we observe that n∗ for the front-end case
is always less than or equal to that for the case without
front-end. This means that a lower area is occupied in the
DRL for the front-end case. In addition, processing time is
smaller for the front-end case. The front-end architecture for
the DRL therefore seems to be better. However, as mentioned
earlier, one RAM port must be left free during computation
in the case with front-end, to allow for load transfer from
the data bus. For example, if we have dual-ported RAM
within each PU, the case without front-end can use both the
ports during computation. On the other hand, in the front-
end architecture, the PU computation unit has access to only
one RAM port. This can result in a reduction in computation
speed. In other words, the apparent advantage of the front-end
architecture could be offset by a degradation in computation
speed. Choice of the appropriate architecture can be made only
after quantifying the speed degradation, which is application
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Fig. 13. Variation of minimum processing time and the optimum number of
PUs, with input load duration.

dependent.
One important aspect of the problem considered in this

paper is that RTR is used because all parts of an application
cannot be simultaneously mapped to the RF. During the course
of execution of an application, tasks are sequentially config-
ured on the RF, whenever they are encountered. Our work aims
to obtain the minimum possible processing time, whenever the
RF needs to be configured to accommodate a new task. This
work is orthogonal to the use of reconfiguration for achieving
larger functional density, reported elsewhere [37].

VII. EXAMPLE APPLICATIONS

We have applied the theory developed in the previous
sections to two examples - namely, one-dimensional (1-D) Dis-
crete Wavelet Transform (DWT) and Finite Impulse Response
(FIR) filter. Hardware simulation results are presented for both
examples. In addition, experimental proof-of-concept on actual
FPGA hardware is presented for the FIR filter example.

A. Simulation details and results
For each example application, we have designed dedicated

PUs to perform the required function. The hardware descrip-
tion for a single PU was targeted onto a Xilinx FPGA of
the Virtex family, which supports partial reconfiguration with
one column or frame being the basic unit for reconfiguration.
Partial reconfiguration of Xilinx FPGAs is done by using
partial bitstreams. In order to obtain partial bitstreams for each
of the PUs, we have used the module-based partial reconfig-
uration flow described in [3], with each PU corresponding to
a module. Xilinx ISE 6.3 (Service Pack 3) software was used
for generating the required partial bitstreams. For configuration
clock frequency less than 50 MHz, the number of configuration
clock cycles for reconfiguration using the SelectMAP interface
directly corresponds to the number of bytes in the partial
bitstream [38]. The configuration clock can be different from
the system clock used by the PUs during computation. The
value of ρ is then calculated as

ρ =
Number of system clock cycles for configuration

Number of system clock cycles for total load transfer
(52)

Similarly, the value of σ may be computed using

σ =
Number of system clock cycles for computation of given load
Number of system clock cycles required to transfer same load

(53)
The details for each individual example are presented next.
The examples correspond to implementations of the case with-
out front-end. Implementation of the front-end case requires
a pre-configured data interface within each PU, and hence it
was not attempted. Instead, estimates of the processing time
for the front-end case are provided, using the values of ρ and
σ computed for the case without front-end.

1) One-dimensional DWT: We have chosen the (9,7)
wavelet filter kernel for implementing a single-level 1-D DWT.
We have designed the 1-D DWT unit based on the basic
design presented in [39]. The designed PU performs in-place
computation on 16-bit data samples. The data bus is taken to
be 32 bits wide, whereas the configuration bus is 8 bits. The
frequency of the configuration clock, system clock and data
bus are taken to be identical. From a sample simulation, the
value of σ was determined using (53). The PU speed factor
κ = σ

σ+1 was then calculated to be 0.94. It was verified in
simulation that κ = 0.94 is almost constant with different
amounts of load fed to the PU.

The input data size was taken as 100,000 samples, which
corresponds to zTcm = 5× 104 system clock cycles. A single
DWT PU was then targeted to the Xilinx Virtex-II Pro FPGA
XC2VP30. Based on the partial bitstream size, the normalized
reconfiguration time ρ was then computed using (52). The
computed value is ρ = 3.4, which gives n∗ = 3 (see Fig. 6(a)).
The system was then simulated for n = 1, 2, 3. The required
load fractions were computed using the analysis in Section V-
A. For simulation, each PU was provided access to sufficient
amount of RAM to hold its input data. The data bus was
modeled as simple read and write. The hardware simulation
results are presented in Table I. From the table, we observe
that the values of Tf observed in simulation are close to that
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TABLE I
RESULTS FOR 1-D DWT: κ = 0.94, Tr = 1.7× 105 CLKS AND zTcm = 5× 104 CLKS. ‘CALCULATED’ VALUES ARE FROM THE DERIVED EQUATIONS,

WHEREAS THE ‘ACTUAL’ VALUES ARE MEASURED FROM HARDWARE SIMULATION.

Using proposed load schedule for no front-end Using equal loads Front-end case
n q Load fractions Tf (clock cycles) Tf (clock cycles) Estimated Tf

{ α1, . . . , αn } Calculated Actual Calculated Actual (clock cycles)
1 1 {1.0} 1× 106 9.64× 105 1× 106 9.64× 105 9.53× 105

2 1 {0.6, 0.4} 6.72× 105 6.77× 105 7.57× 105 7.37× 105 6.47× 105

3 1 {0.54, 0.33, 0.13} 6.18× 105 6.13× 105 7.88× 105 7.74× 105 6.01× 105

4 – No solution – – 8.88× 105 – No solution

computed from the derived equations, and minimum Tf occurs
for n = 3 as expected.

When equal loads are provided to the PUs, i.e αi = zTcm/n
for i = 1, . . . , n, the finish time corresponds to the time instant
when pn finishes computation. For this case, the expression for
the finish time can be obtained as

Tf =















nTr +
zTcm

n

(

1

1 − κ

)

, zTcm

n
< Tr

Tr + zTcm

[

1 +
1

n

(

κ

1 − κ

)]

, zTcm

n
≥ Tr

(54)

Table I shows the simulation results when the PUs are provided
with equal loads, as well as the values computed using (54).
From the table, we can see that the proposed load schedule
gives a lower processing time compared to equally dividing
the load among the PUs. Table I also gives some estimates
for the finish time for the front-end case, using ρ = 3.4 and
κ = 0.94. As expected, the finish times are smaller for the
front-end case. However, possible increase in κ due to usage
of RAM port during load transfer (Section VI) has not been
accounted for.

2) FIR filter: We have used Xilinx CoreGenerator to obtain
a 16th order (17-tap) low-pass FIR filter core. The filter core
is based on distributed arithmetic and accepts 8-bit input data
every 8 clock cycles. Each PU is designed with the FIR
core and surrounding control logic for input and output data
transfer. Input and output data are taken as 8 bits wide. The
data bus as well as the configuration bus are taken to be 8 bits
wide. The data bus is actually an interface to SRAM, and is
designed to transfer each byte every 3 clock cycles. Our theory
is applicable here since a single SRAM port is equivalent to
the constraint of using a shared bus.

The input data size is again 100,000 samples, which gives
zTcm = 3 × 105 clock cycles. The PU is targeted to a Xilinx
Virtex XCV300 FPGA, with the resulting partial bitstream size
being approximately 6 × 104 bytes. The configuration clock
frequency is taken to be half the system clock frequency,
therefore Tr = 1.2 × 105 system clock cycles, which gives
ρ = 0.4. We also have κ = 0.77, computed from sample
simulations of a single PU. Using these values of ρ and κ,
our analysis gives n∗ = 5. Hardware simulations were carried
out for n = 1, . . . , 5, with each PU having access to as much
local RAM as necessary. Hardware simulation results for the
FIR filter are given in Table II. As before, the simulated values
are close to the computed values. Also, the proposed load
distribution is better than distributing equal load to all PUs.

addr20−0

SelectMAP
control lines

512k × 8 bits SRAM

XCV300-4 PQ240

FPGA cpld valid

cpld rdone

XC95108-7 TQ100

2M × 8 bits
Flash memory

ce oe wed7−0 reset

CPLD

PC parallel port

data lines
SelectMAP

Fig. 14. XSV-300 board components and connections relevant to our
experiment.

Again, estimated values of the finish times for the front-end
case are smaller than those for the no-front-end case, assuming
same values of ρ and κ.

B. Experimental results
We now describe the experiment carried out on actual FPGA

hardware. The hardware platform is the XSV-300 board from
XESS Corp. [40]. The board components and connections
pertinent to our experiment is depicted in Fig. 14. Access
to all components on the board from the desktop personal
computer (PC) is through the Complex Programmable Logic
Device (CPLD). For eg., to transfer data between the PC and
onboard SRAM, the CPLD and FPGA must be programmed
with the required interfaces and control logic. Similarly, pro-
gramming the Flash memory requires the appropriate logic
to be programmed in the CPLD. The XSTOOLS software
package is used for programming the CPLD. The XSTOOLS
software is also used for programming the FPGA whenever the
SRAM needs to be accessed. We have developed ‘C’ programs
to read/write SRAM and Flash memory from the PC, through
the PC parallel port. The FPGA logic for accessing SRAM is
based on the “PC to SRAM interface” design in [41], whereas
the CPLD designs are based on examples available on the
XESS website [40].

For our experiment, the configuration data required for
FPGA reconfiguration is stored in the Flash memory. The
configuration data constitutes of (a) the initial power-up con-
figuration of the FPGA, which has the fixed controller modules
as well as placeholders for the PUs. (b) partial bitstream for
each PU. A state machine programmed in the CPLD carries
out the required reconfiguration. Configuration is initiated as
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TABLE II
RESULTS FOR FIR FILTER: κ = 0.77, Tr = 1.2× 105 CLKS AND zTcm = 3× 105 CLKS. ‘CALCULATED’ VALUES ARE FROM THE DERIVED EQUATIONS,

WHEREAS THE ‘ACTUAL’ VALUES ARE MEASURED FROM HARDWARE SIMULATION.

Using proposed load schedule for no front-end Using equal loads Front-end case
n q Load fractions Tf (clock cycles) Tf (clock cycles) Estimated Tf

{ α1, . . . , αn } Calculated Actual Calculated Actual (clock cycles)
1 1 { 1.0 } 1.42× 106 1.43× 106 1.42× 106 1.43× 106 1.12× 106

2 2 { 0.565, 0.435 } 8.57× 105 8.61× 105 9.22× 105 9.26× 105 6.82× 105

3 2 { 0.427, 0.329, 0.244 } 6.78× 105 6.81× 105 7.95× 105 7.95× 105 5.75× 105

4 1 { 0.388, 0.296, 0.204, 0.112 } 6.26× 105 6.27× 105 8.06× 105 8.07× 105 5.51× 105

5 1 { 0.384, 0.292, 0.200, 0.108, 0.016 } 6.21× 105 6.22× 105 8.61× 105 8.62× 105 No solution
6 – No solution – – 9.37× 105 – No solution

PU

SRAM
connector
module

SRAM interface pins

cpld valid
cpld rdone

PU p1 p2 Memory Controller / Arbiter

Fig. 15. Layout of FIR filter example implemented on XCV300, as seen in
the FPGA Editor Xilinx software.

soon as appropriate control signals are received from the PC
parallel port. The CPLD then configures the FPGA with the
initial configuration (a). After that, the PUs are sequentially
configured. Reconfiguration is done through the SelectMAP
port of the FPGA. The data lines of the SelectMAP port are
directly connected to the data lines of the Flash memory. The
CPLD controls the SelectMAP control signals, while simul-
taneously issuing the appropriate address and read signals to
the Flash. After configuration of every PU, the CPLD signals
a pulse on the cpld rdone pin of the FPGA, while asserting a
logic high on cpld valid.

The FIR filter example presented in Section VII-A.2 was
targeted onto the XCV300 FPGA. Two PUs were implemented
on the FPGA, as shown in the layout in Fig. 15. The different
modules marked on the layout are explained below:

1) PU p1, p2: The FIR filter PUs.
2) Memory controller / Arbiter: This module accepts re-

quests from the PUs for reading/writing data to SRAM,
and issues the appropriate control/data signals to the
SRAM. Each PU requests for data as soon as it is
configured, so some arbitration is required to ensure that
load transfer occurs in the required order.

3) SRAM connector module: On the XSV-300 board, the
SRAM chip has its interface pins connected to almost
the entire top portion of the FPGA, as indicated in
Fig. 15. The SRAM connector module is required for
providing access to SRAM pins that are not directly
attached to the Memory controller module.

Connection between the PUs and Memory controller mod-
ule, as well as between the SRAM connector and Memory
controller, is through fixed, unidirectional routing lines called
bus-macros [3]. In particular, connection between p1 and the
memory controller is through long bus-macros that run “over”
p2. The long bus-macros were created using the methodology
outlined in [42]. These lines provide reliable connection even
while p2 is undergoing reconfiguration.

Xilinx modular design flow [43] was used for implement-
ing all the required modules. However, for generating the
partial bitstreams, the difference-based flow was used [3].
The difference-based flow ensures that the fixed part (in
particular, the SRAM connector module) remains the same
during reconfiguration of the PUs. During reconfiguration of
each PU, the entire FPGA height spanning the width of the PU
is reconfigured. However, since the SRAM connector module
remains the same, the reconfiguration of the portion of the
SRAM connector that lies above the PU occurs in a glitchless
manner, so it is possible for the SRAM interface to be active
even during PU reconfiguration.

The local RAM for each PU was implemented using Xilinx
lookup tables (LUTs) within each PU. The maximum capacity
of the local RAM turned out to be 64 bytes per PU. This
presented a serious problem for testing our theory, since such a
small load (at normal values of σ) gives n∗ = 1. The execution
time of each PU was artificially stretched by inserting a delay
of 4096 clock cycles between processing of successive input
samples. This resulted in σ = 1370, consequently increasing
n∗ to 3.

The number of input samples was taken as 100 bytes
(zTcm = 300). In order to ensure that there is no interde-
pendency in the computations carried out by the PUs, the
last sixteen input samples fed to p1 must also be input to
p2. Consequently, the effective input size is 84 samples. This
overlap of data is indicated in Fig. 16, for the square wave
input. With the input data stored in SRAM, the run-time
partial reconfiguration experiment was carried out. As soon
as a pulse on cpld rdone signal is observed (when cpld valid
= 1), the memory controller issues a start signal to the PU
that is configured. The rest of the process of load transfer
and computation occurs as outlined earlier. After computation,
each PU requests the memory controller/arbiter to transfer
result data back to SRAM. Contents of SRAM are later read
back into the PC. The output samples obtained are shown
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Fig. 16. Plots of input square wave and low-pass filtered output samples
obtained from the experiment carried out on the XSV-300 hardware board.

TABLE III
EXPERIMENTAL RESULTS FOR FIR FILTER: σ = 1370⇒ κ = 0.99927.
CONFIGURATION CLOCK FREQUENCY IS HALF THAT OF THE SYSTEM

CLOCK. BASED ON BITSTREAM SIZE, Tr IS TAKEN AS 1.2× 105 CLKS FOR

COMPUTING αi . zTcm = 300 CLKS. CALCULATED VALUE OF Tf IS

3.86× 105 CLKS.

PU Calculated # samples Bitstream Measured time
load fraction input given size (bytes) (×105 clock cycles)

Start Finish
p1 0.65 64 59396 1.19 3.82

p2 0.35 36 58488 2.36 3.84

in Fig. 16. The outputs from each PU are then combined as
indicated, to get the required low-pass filtered output signal.

Table III gives the time information recorded from the ex-
periments. The time is recorded within the memory controller
using a counter that increments every 1024 clock cycles. The
counter values are written back to SRAM, which are then
read into the PC along with the output data. We observe that
the start times of pi (which is the time instant pi is ready
after configuration) is almost the same as iTr (i = 1, 2), as
expected. We can also see that the measured finish times are
almost equal, and are very close to that obtained from theory
(3.86 × 105 clks). It may be noted that n = 3 cannot be
implemented due to limited FPGA area. Further, for n = 3,
α3 = 0.04 which corresponds to 4 samples input to p3 ; this
cannot be implemented since p3 must be given at least 16
input samples, corresponding to overlapped data as mentioned
earlier.

VIII. CONCLUSIONS

In this paper, we have described a methodology for mapping
data-parallel applications onto reconfigurable hybrid processor
architectures. We have modified the framework of DLT in or-
der to account for reconfiguration overhead of PUs. When the
reconfiguration overhead is absent, the processing time reduces
with the inclusion of every additional PU. In contrast, when
there is a reconfiguration overhead, we have demonstrated that
there exists an upper limit on the number of PUs that can be

used in the RF, beyond which an improvement in processing
time cannot be obtained. We have shown this for two cases
- the case when load cannot be transferred to the DRL in
parallel with reconfiguration / computation and the case when
parallel load transfer is possible. Algorithms for obtaining the
optimum number of PUs and analytical expressions for the
corresponding optimum load fractions, load transfer schedule
and processing time were derived.

Hardware simulations of two examples, viz., 1-D DWT and
FIR filter, targeted to Xilinx FPGAs, were presented. The
theory developed was used to obtain the optimum number of
PUs (n∗) to be used in the FPGA, as well as the load fractions
and data transfer schedule, based on the estimated value of
reconfiguration time. Hardware simulations were performed
for all values of n ≤ n∗, to show that optimum processing
time is achieved for n = n∗. Simulations also showed that the
proposed load distribution results in smaller processing time,
compared to a simple strategy of equally distributing the load
to all PUs. Implementation of a hardware prototype on an
XSV-300 FPGA board was then presented. It was shown that
the finish time obtained on the hardware prototype was close
to that obtained from theory. The practical applicability of the
theory developed was thus demonstrated.
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