
XXXX

Efficient Algorithms for Discrete Gate Sizing and Threshold Voltage
Assignment based on an Accurate Analytical Statistical
Yield-Gradient

Ramprasath S, Indian Institute of Technology, Madras

Vinita Vasudevan, Indian Institute of Technology, Madras

In this paper, we derive a simple and accurate expression for the change in timing yield due to a change
in the gate delay distribution. It is based on analytical bounds that we have derived for the moments of
the circuit and path delay. Based on this, we propose computationally efficient algorithms for (a) discrete
gate sizing and (b) simultaneous gate sizing and threshold voltage (VT) assignment so that the circuit meets
a timing yield specification under parameter variations. The use of this analytical yield gradient within a
gradient-based timing yield optimization algorithm results in a significant improvement in the run-time as
compared to the numerical method, while achieving the same final yield. It also allows us to explore a larger
search space in each iteration more efficiently, which is required in the case of simultaneous resizing and
VT assignment. We also propose heuristics for resizing/changing the VT of multiple gates in each iteration.
This makes it possible to optimize the timing yield for large circuits. Results on ITC’99 benchmarks show
that the proposed multi-node resizing algorithm results in a significant improvement in the run-time with
a marginal average area penalty and no cost to the final yield achieved.

CCS Concepts: rHardware → Electronic design automation; Statistical timing analysis; Yield and

cost optimization;

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Timing Yield, Yield Optimization, Discrete gate sizing, VT assignment

1. INTRODUCTION

With the entry into the nanometer regime of the process technologies, circuit opti-
mization to meet timing specification with the deterministic worst case static timing
analysis has become extremely pessimistic. Timing analysis and yield optimization re-
quire statistical models for the gate delay. Both the gate delays as well as the arrival
and required time (AT and RT) at a node are random variables modelled using the
canonical model [Visweswariah et al. 2004; Chang and Sapatnekar 2005]. Since the
circuit delay is now a random variable, timing yield optimization requires statistical
measures. A spectrum of approaches based on statistical static timing analysis (SSTA)
have been proposed for yield optimization.

The approaches in the literature can broadly be classified into two types. The first
class of methods are the ones that use nonlinear optimization techniques. These tech-
niques pose the gate sizing problem as a continuous objective function. The methods
proposed by [Jacobs and Berkelaar 2000; Choi et al. 2004; Mani and Orshansky 2004;
Singh et al. 2005; Beece et al. 2010] and [Davoodi and Srivastava 2008] are examples
of such an approach. In [Jacobs and Berkelaar 2000], LANCELOT [Conn et al. 1992]
is used as the optimization engine, with the assumption that the arrival times (AT)
at edges converging on a node are independent. In [Mani and Orshansky 2004], gate

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1084-4309/2015/-

ARTXXXX $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:2

sizing is framed as a linear programming (LP) problem with a linear model for the gate
delay in terms of size. The gate delay variations are taken into account by adding to
the gate delay a node margin function, which is essentially a multiple of the standard
deviation of the gate delay. This multiple (node margin coefficient) is assumed to be
the same as that in the target yield, making it overly pessimistic. Once again, the gate
delays are assumed to be independent of each other. A Lagrangian relaxation is used
in [Choi et al. 2004], to get a modified objective function, with gate sizes as the param-
eters. Only the variance of the circuit delay is used in the optimization and the gate
sizes are determined with deterministic delays in each iteration. [Singh et al. 2005] use
a geometric programming approach, with an uncertainty ellipsoid to model variations
in transistor widths and lengths. The disadvantage of these techniques is that solu-
tion to the optimization may not be integer sizes for the transistors and thus require
rounding to the nearest possible integer. This rounding operation could significantly
alter the solution obtained.

The second type of techniques are the ones that try to solve the discrete problem di-
rectly. They define a statistical yield gradient (YG), which is the change in the timing
yield for a unit change in the size. To evaluate the change in yield, an SSTA run is per-
formed to obtain the change in the circuit delay due to a change in the size of the gate
i.e., the YG is evaluated numerically. The optimization algorithms used are iterative in
nature and in each iteration, the YG of a large number of gates needs to be evaluated
in order to pick the best candidate for resizing. These two issues make the algorithm
unsuitable for large circuits. To reduce the number of YG evaluations, [Guthaus et al.
2005] use criticality of the nodes to select a subset of gates whose YG is to be evaluated.
In [Sinha et al. 2006], instead of using the circuit delay to evaluate the YG, they use an
alternate figure of merit that involves performing SSTA on a subnetwork of each of the
gates considered for resizing. This subnetwork involves two fan-in and fan-out levels
of the gate under consideration. In [Srivastava et al. 2008], to evaluate the new circuit
delay, the ATs of all the perturbed gates until the level of the resized gate are updated.
The RTs till the level of the resized gate are assumed to remain the same. However,
this could lead to errors since the slew change on the resized gate affect the down-
stream delays, which in turn affects the required time (RTs). [Davoodi and Srivastava
2008] use binning yield loss as the objective of optimization. In this approach, SSTA is
used to obtain the change in binning yield loss that is required for gradient evaluation.
This is computationally expensive. [Tang and Jha 2015] frame the yield optimization,
leakage and dynamic power minimization as a multi-objective optimization problem
and try to solve it using genetic algorithm. They use node criticalities as a heuristic
to reduce the size of the search space. The criticality evaluation technique they use
is from [Visweswariah et al. 2006], which assumes independence between ATs. The
disadvantage with the use of genetic algorithm is that its applicability is limited to
smaller size designs.

An alternative to the numerical approach is to evaluate YG using analytical expres-
sions[Xiong et al. 2008; Beece et al. 2010]. Analytical expressions for the yield gradient
have been derived in [Xiong et al. 2008], but no methodology/results on how these ex-
pressions are used for timing yield optimization have been included. Moreover, they
do not include the effect of fan-in and fan-out gates on the yield gradient, which will
lead to errors. [Beece et al. 2010] use a non-linear optimizer with the analytical YG
expressions to perform sizing at transistor level assuming availability of continuous
transistor widths. However, they write the analytical YG as a function of all edges in
the graph, which makes the evaluation of analytical YG almost as expensive as the
numerical YG.

Gradient-based algorithms have also been used for minimizing statistical leakage
while meeting the timing yield specification. In [Srivastava et al. 2004], first the cir-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:3

cuit is optimized for timing using TILOS with the lowest threshold voltage (VT) cell
library alone. For VT assignment, they use a statistical sensitivity metric that is local
to the gate and easy to compute. However, their algorithm involves multiple upsizings
and potentially several SSTA runs every-time a timing violation is detected, which is
expensive. [Hwang et al. 2013] use two metrics sequentially for the optimization. The
first is local to the gate and easy to compute. But the second, the swap sensitivity, re-
quires an incremental SSTA for its computation, making it expensive. In [Mani et al.
2007], once again in the first phase the circuit is sized using low VT devices alone.
This is followed by a statistical slack assignment phase, which is framed as second
order conic program (SOCP). Node margin coefficients are used in the SOCP similar to
[Mani and Orshansky 2004]. Node margin coefficients are evaluated using path criti-
calities found using the algorithm specified in [Zhan et al. 2005], which makes it run-
time intensive. These coefficients are also pessimistic since the worst of all coefficients
obtained from various paths through a node are used.

In this paper, we explore the use the YG as defined in [Xiong et al. 2008] for (a)
statistical timing yield optimization using discrete gate sizing and (b) minimization
of the nominal leakage power while meeting a timing yield constraint using both gate
sizing and VT assignment. The two main issues with the gradient based algorithms are
the potentially large number of nodes for which the YG needs to be evaluated before
the size/VT of a gate is changed (candidate list) and the lack of an efficient method
to evaluate the gradient itself. In this paper, we tackle both these issues. We use an
analytical YG based approach to tackle the discrete gate sizing/VT assignment problem
directly. We improve the accuracy of the expressions derived in [Xiong et al. 2008] by
taking into account the effect of resizing on the fan-in and fan-out gates. To efficiently
evaluate the yield gradient of a large number of gates in each iteration, we derive a
simple and accurate expression for the change in the timing yield due to a change in
the gate delay distribution. This derivation is based on bounds that we have derived
for µ, σ and σ/µ of the path and circuit delay. We have used this expression for the
yield gradient to optimize the statistical timing yield with (a) area and (b) nominal
leakage power as the cost, corresponding to the discrete gate sizing and simultaneous
gate sizing and VT assignment problem. Even with this simplified yield gradient, the
cost of optimization becomes prohibitive for large circuits. To address this problem,
we propose a heuristic for resizing multiple gates in an iteration, which improves the
run-time considerably with a marginal area/leakage power penalty.

The paper is organised as follows. Section 2 describes a generic gradient based dis-
crete gate sizing algorithm and the issues involved. In Section 3, we derive a simpli-
fied expression for the analytical yield gradient. Section 4 contains the algorithm for
resizing multiple nodes in every iteration of the optimization. Section 5 describes the
schemes used in performing simultaneous gate sizing and VT assignment. Section 6
contains the results of various experiments performed on ITC’99 benchmarks. Section
7 concludes the paper.

2. GRADIENT BASED ALGORITHMS

Since the linear canonical model is used to represent the edge delays and AT, the
circuit delay distribution can be written as a Gaussian random variable with a proba-
bility density function (PDF) N (µc, σc). The timing yield (Y) of the circuit for a timing
specification Tspec is given by:

Y = Φ

(

Tspec − µc

σc

)

(1)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:4

where Φ is the CDF of the standard normal distribution. It can be improved through
change in either the size or VT of the gates. Let λ be a generic cost that has to be
minimized while improving the timing yield. For example, λ could be area or nominal
value of the leakage power.

The yield gradient (YG) is defined as the expected change in yield for a unit change
in cost λ. A typical discrete gate sizing algorithm that optimizes the circuit for timing
yield using the YG is shown in Algorithm 1. In Algorithm 1, a candidate list is first
created that contains the list of gates that could potentially improve the yield. For
each of the gates in the candidate list, the change in yield (∆Y) due to a change in its
size/VT is computed. The yield gradient is evaluated as the ratio ∆Y

∆λ
, where ∆λ is the

change in cost due to a change in the size/VT of the gate. The gate with the largest YG
is replaced and the new circuit delay is evaluated. This process is repeated until the
target yield is met. For discrete gate sizing/VT assignment, ∆λ is evaluated using the
area/nominal leakage power available from the standard cell library data.

ALGORITHM 1: Optimize Circuit for Target Yield:

1: Perform forward SSTA to find AT of all nodes
2: repeat
3: Create list of candidate gates(L)
4: for all gates g ∈ L do
5: Change the size/VT of gate g
6: Perform an incremental SSTA to obtain the change in timing yield ∆Y
7: Compute the change in cost ∆λ
8: Yield gradient of gate g, YGg = ∆Y

∆λ
9: Restore size of g
10: end for
11: Sort L based on decreasing order of YG
12: Change size/VT of gate having the largest YG
13: Perform incremental SSTA and update the circuit delay
14: Find the new yield {δYield is the change in yield between subsequent iterations}
15: until (Yield < Target Yield or δYield < ǫ)

From Algorithm 1, it is clear that an incremental SSTA is necessary to obtain the
change in yield for every gate in the candidate list, making it computationally the
most demanding step. To overcome this, we use an analytical expression for the YG,
as mentioned in the introduction. In the next section, we derive simplified expressions
for the analytical YG, which is both accurate and has run-time efficiency.

3. EFFECTIVE YIELD GRADIENT

We first define some terms that are required for the computation of the analytical yield
gradient.

(1) Path delay (PD): Path delay associated with a node is defined as the maximum
delay of all the paths that pass through the node. For a node n, PD is evaluated as
the sum of its AT and RT i.e., PDn = ATn +RTn.

(2) Complementary path delay (CPD): The CPD associated with a node is defined as
the maximum delay of all the paths that do not pass through the node.

Using the definition of PD and CPD of a node, the circuit delay dc can be written as the
MAX(PD,CPD). If x represents the PD of node n and y its CPD, then the circuit delay

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:5

dc can be written as:

dc = max(x, y) = N (µc, σc) (2)

=⇒ µc = f(µx, σx, µy, σy, Cxy), σc = g(µx, σx, µy, σy, Cxy) (3)

where Cxy is the covariance between x and y and the functions f and g are given by
Clark’s formulas [Clark 1961].

The analytical YG for a node n is given by:

YGn =
dY

dµc

×
dµc

dλ
+

dY

dσc

×
dσc

dλ
(4)

= φ

(

Tspec − µc

σc

)

×
1

σc

×

[

−

(

dµc

dλ

)

n

−

(

Tspec − µc

σc

)(

dσc

dλ

)

n

]

(5)

where φ is the PDF of the standard normal distribution.
∆µc

∆λ
can be evaluated using

the chain rule as:

∆µc

∆λ
=

dµc

dµx

×
∆µx

∆λ
+

dµc

dσx

×
∆σx

∆λ
+

dµc

dCxy

×
∆Cxy

∆λ
(6)

A similar expression can be written for
∆σc

∆λ
. Appendix A contains the expressions for

the quantities dµc

dµx

, dµc

dσx

and dµc

dCxy

and the corresponding derivatives of σc. They are

obtained using Clark’s formula. The rest of the quantities are evaluated using data
from the standard cell libraries. This is demonstrated using the example circuit shown
in Fig. 1. Let x represent the PD associated with node n and x′ represent the PD after

1

2

fi(n)

e12

e11

e21
e22

e51

5

en1
en2 n

e61
6

3

4

e31
e32

e41
e42

fo(n)

Fig. 1: Example circuit

the edge delays associated with en1 and en2 (dn1 and dn2) are changed due to either a
change in the size or the VT of gate n. x and x′ can be written as:

x = max(AT1 + dn1 +RTn, AT2 + dn2 +RTn) (7)

x′ = max(AT1 + d′n1 +RTn, AT2 + d′n2 +RTn) (8)

∆µx, ∆σx and ∆Cxy are given by:

∆µx = (µx′ − µx), ∆σx = (σx′ − σx), ∆Cxy = (Cx′y − Cxy) (9)

Evaluation of ∆Cxy requires the canonical form of the CPD. Using the reversible MAX
operation described in [Sinha et al. 2012], CPD evaluation is a constant time operation
for every node considered. Unlike this, the numerical YG techniques require at the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:6

least as many MAX operations as the number of edges in the subnetwork [Sinha et al.
2006]. So analytical YG has a clear advantage in terms of run-time over the numerical
YG. The values obtained from (9) can be substituted in (6) to obtain YGn.

3.1. Fan-in/out effects

A change in the size/VT of gate n has the following effects

(1) Increasing the size increases the load seen by the fan-in gates thereby increasing
their delay and output slew.

(2) Siblings of n (fan-out gates of fan-in of n) now have an increased delay due to the
change in their input slew.

(3) Fan-out gates of n now have a reduced delay due to the change in slew at their
inputs.

(4) Changing only the VT of a gate n changes its own delay and also its output slew.
The delay of the gates in the fan-out cone will now potentially change due to the
change in their input slew.

Neglecting the change in the delay of the fan-out gates will give a more pessimistic YG
and it slows down convergence. Neglecting the fan-in effects results in an optimistic
YG. In fact, in many cases the YG evaluated is positive but it turns out that it is actu-
ally negative. The reason is that the increased delays of the fan-in gates will propagate
through their fan-out cones and cause a potential increase in the circuit delay. Unless
both these effects are taken into account the change in yield will not be evaluated
correctly. Therefore, an effective yield gradient (EYG) that considers these effects is
obtained using chain rule. For example, in Fig. 1, the delays of the gates 1, 2, n, 3, 4, 5

and 6 are affected. This implies that the chain rule for evaluating
∆µc

∆λ
can be written

as:

∆µc

∆λ
=

∑

i∈{1,2,n,3,4,5,6}

[

dµc

dµi

×
∆µi

∆λ
+

dµc

dσi

×
∆σi

∆λ
+

dµc

dCii

×
∆Cii

∆λ

]

(10)

where Cii is the covariance between the PD and CPD associated with node i. A similar

expression can be written for
∆σc

∆λ
. These two expressions can then be used to compute

YGn. YGi for node i is evaluated in the same way as YGn in equation (4) and (6)
by considering the changes in their corresponding PDs. Therefore, the effective yield-
gradient (EYGn) for node n can be written as:

EYGn =
∑

i∈fi(n)

YGi + YGn +
∑

j∈fo(n),fo(fi(n))

YGj (11)

Here, fo(n) indicates all gates in the fanout cone of gate n and fo(fi(n)) indicates the
fan-out cone of the predecessors of n. However, if all the gates in the fan-out cone are
considered to evaluate the EYG, then there is not much advantage with respect to the
numerical YG technique and one could use the numerical YG instead. The question
is how many levels of fan-out are required to evaluate the EYG with reasonable accu-
racy. Fortunately, in practice, the change in delays are not significant after one or two
levels of fan-out as seen in [Coudert 1997; Sinha et al. 2006]. Fig. 2 compares the EYG
obtained using one and two levels of fan-out for b19 benchmark against the numerical
YG. It is clear from the figure that there is no significant difference between one and
two levels of fan-out and hence a single fan-out level can be considered to evaluate the
EYG. Figure 2 also compares the effect of including the sibling gates of n (gates 5 and
6 in Figure 1) in evaluating the EYG. It is clear from the figure that the inclusion of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:7

the sibling gates provides very little improvement in the accuracy of EYG. This is the
case since the dominant components of the EYG arise from n and its fan-in/out. This
effect is also seen by [Li et al. 2012].

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Numerical YG

E
Y

G
tw

o
le
v
e
ls

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Numerical YG

E
Y

G
o
n
e
le
v
e
l

fi+fo

fi+fo+sib

(a)b19 (b)b19

Fig. 2: Comparison of numerical YG and EYG evaluated using one/two levels of fan-out
gates for two of the large ITC’99 benchmarks

3.2. Accuracy of the EYG

The accuracy of EYG depends on the accuracy to which the coefficients given in Ap-
pendix A are computed. This in-turn depends on the accuracy of criticality computation
and computation of the coefficients of the CPD. The accuracy of the criticality computa-
tion is discussed in [Ramprasath and Vasudevan 2012; 2014]. The computation of the
CPD depends on the accuracy of the reversible MAX operation. This has an accuracy
similar to criticality computation [Ramprasath and Vasudevan 2014]. Even with these
errors, EYG follows a trend that is similar to the numerical YG as shown in Fig. 2.

Besides computational errors, there are still outliers where the numerical YG is
close to zero but the EYG is a relatively large non-zero value. One such scenario is
illustrated in Fig. 3. Consider the case where the EYG of node c is to be evaluated
and (s-a-b-c-e-f-g-t) is the dominant path in the circuit, followed closely by the path
(s-a-b-d-e-f-g-t). The PDs of these two paths are typically highly correlated since they
share most of the nodes. In such a scenario, d gets close to zero criticality and c gets
a larger criticality. But the numerical YG of node c will be close to zero, since upsizing
c makes the path (s-a-b-d-e-f-g-t) dominant, so that the circuit delay remains almost
the same. But the EYG could still be a large value as it only considers the changes in
PD of b, c and e. Although in this case the analytical EYG differs from the numerical

a b
c

d
e f g

h i j k

l m n o

s t

Fig. 3: Illustration demonstrating one of the sources of error in EYG when compared
against Numerical YG

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:8

YG, it has an advantage. If node c were resized using the analytical EYG, node d which
was overshadowed by c is now exposed and can be resized in the future iterations.

3.3. Using EYG for timing yield optimization

In order to test the effectiveness of the analytical EYG for discrete gate sizing, we
used it for yield optimization of the ITC benchmarks. For this experiment, only the
change in size of gates is considered and λ is chosen as the sum of area of all the cells.
Evaluation of the EYG requires node criticalities, which were computed using the al-
gorithm described in [Ramprasath and Vasudevan 2014]. It uses a pruning algorithm
to improve accuracy and run-time efficiency. The pruned nodes have a marginal effect
on the circuit delay and the corresponding gates are therefore removed from the can-
didate list. In many circuits, this is very effective in limiting the number of gates for
which the EYG is evaluated in each iteration. The gate with the largest positive EYG
is picked for upsizing and an incremental SSTA run is done to obtain the modified
circuit delay and the corresponding yield. These steps are shown in Algorithm 2.

ALGORITHM 2: Optimize Circuit for Target Yield:

1: Perform forward/reverse SSTA to find AT/RT of all nodes
2: Evaluate criticalities of all nodes
3: repeat
4: Prune non-dominant nodes
5: List of candidate gates(L): set of all unpruned nodes
6: for all gates g ∈ L do
7: Change the size of gate g
8: Update the edge delays of gates in fan-in and required number of fan-out levels of g
9: Evaluate EYG of g using the updated edge delays
10: Restore size of g and the perturbed edge delays to their original values
11: end for
12: Sort the list of gates in L based on EYG
13: if largest EYG > γ then
14: Change size of gate having the largest EYG {γ is a small positive threshold}
15: else
16: STOP
17: end if
18: Perform incremental SSTA and update the AT/RT/PD of all nodes
19: Find the new yield {δYield is the change in Yield between subsequent iterations}
20: until (Yield < Target Yield OR δYield < ǫ)

Table I compares the area overhead and final yield after optimization using three
different EYG using Algorithm 2:

(1) Without considering fan-in/fan-out effects
(2) Considering fan-in and one level of fan-out
(3) Considering fan-in and two levels of fan-out
(4) Considering fan-in, one level of fan-out and sibling gates

It is clear from the table that the inclusion of the fan-in/out gates generally results in a
better final yield at a smaller area overhead. The difference is above 10% for b06, b08,
b11 and b19, being as high as 41% in b11. In some of the benchmarks however (i.e.
b09, b12, b20 and b21), the inclusion of fan-in/out effects results in a marginally lower
final yield. This is due to the threshold γ in Algorithm 2. In our algorithm, positive
EYGs below γ are treated as zero, to limit the number of iterations. The value used is

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:9

between 10−4 and 10−6. Table II, shows that the yield can be improved by setting the
threshold to zero, but the area overhead also increases as expected.

All the benchmarks have practically the same final yield and increase in area upon
considering either one or two levels of fan-out. The results are also similar on inclusion
of the sibling gates. Since the effect of sibling gates is marginal, they are not used for
EYG evaluation in the rest of this paper.

Benchmark
Area overhead(%)[Final yield (%)]

No fan-in / fan-out One-level
fan-out

Two levels
fan-out

one-level fan-
out + siblings

b01 118.79[86.96] 23.76[96.62] 37.59[96.72] 22.34[96.66]
b02 72.78[88.72] 10.65[95.46] 10.65[95.46] 12.43[95.55]
b03 16.13[94.63] 7.93[98.35] 7.93[98.35] 8.20[98.35]
b04 13.20[96.81] 3.42[98.69] 3.32[98.66] 2.81[98.62]
b05 24.31[97.91] 4.75[99.02] 4.75[99.02] 4.25[99.03]
b06 60.06[83.52] 14.33[95.72] 14.33[95.72] 14.88[95.75]
b07 3.99[99.87] 3.01[99.80] 3.01[99.80] 2.97[99.80]
b08 36.62[81.65] 8.89[95.97] 10.05[95.90] 8.70[95.96]
b09 22.59[83.20] 6.73[82.40] 6.73[82.40] 6.53[82.34]
b10 45.75[94.62] 11.01[99.30] 11.01[99.30] 8.77[99.26]
b11 14.08[53.42] 4.45[94.68] 4.57[94.78] 4.02[94.71]
b12 7.30[99.65] 2.65[99.49] 2.78[99.54] 2.45[99.36]
b13 11.89[99.37] 2.02[99.86] 2.07[99.87] 1.15[99.69]
b14 8.09[93.05] 2.98[96.15] 3.06[96.19] 2.72[95.81]
b15 4.34[99.16] 1.25[98.68] 1.23[98.66] 1.12[98.55]
b17 1.21[99.22] 1.70[99.87] 1.65[99.87] 1.38[99.87]
b18 3.74[88.56] 2.83[97.01] 2.97[97.01] 2.03[97.47]
b19 2.93[84.40] 2.17[96.01] 2.26[95.83] 2.13[97.11]
b20 2.19[99.40] 1.20[98.53] 1.28[98.70] 1.00[98.36]
b21 1.09[99.71] 0.55[99.33] 0.57[99.34] 0.47[99.21]
b22 0.52[99.69] 0.59[99.87] 0.59[99.87] 0.50[99.87]

Average 22.46[91.60] 5.57[97.18] 6.30[97.19] 5.28[97.21]

Table I: Comparison of area penalty and final yield on using YG a) without considering
fan-in/out effects b) considering fan-in and one level of fan-out, c) considering fan-in
and two levels of fan-out

Benchmark Area overhead (%)[Final yield (%)]

b09 9.73[85.33]
b12 4.46[99.87]
b20 1.47[99.87]
b21 0.85[99.87]

Table II: Final yield and area overhead upon lowering γ (in Algorithm 2) to zero.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:10

3.4. Simplified expression for the EYG

Based on the following bounds, simplified expressions for the EYG are obtained:

(1) The upper bound for σ
µ

of the PD is the maximum value of σ
µ

over all edges in the

circuit graph.
(2) σc ≤ max(σx, σy).

(3) σc ≥ F ×min(σx, σy) where F =
√

1− 1
π

.

The proof for the first two bounds is given in [Ramprasath and Vasudevan 2012], while
the proof for the third is included in Appendix B. In addition, we assume that the
correlation coefficient between the PD and CPD does not change on replacing a gate.
This is reasonable since the change in the correlation coefficient between paths due to
change in the size of a single gate is marginal. Appendix C details the steps involved
in obtaining simpler expressions for YGn along with the results used and assumptions

made to arrive at the result. From the appendix,
∆µc

∆λ
and

∆σc

∆λ
can be written as:

∆µc

∆λ
≈

∑

i∈{1,2,n,3,4}

dµc

dµi

×
∆µi

∆λ
with

dµc

dµi

≈ Φ(αi)

∆σc

∆λ
≈

∑

i∈{1,2,n,3,4}

dσc

dµi

×
∆µi

∆λ
with

dσc

dµi

≈ f(αi, t)
θi
2σc

(12)

where f(αi, t) is defined in equation (16) in Appendix A.
As discussed in the previous section, the EYG of all (unpruned) nodes have to be

recomputed every iteration. This in turn requires computation of criticalities and the
canonical form of the CPD. Computation of criticalities cannot be avoided and the
techniques described in [Ramprasath and Vasudevan 2014] can be used to evaluate
it efficiently. The canonical form of the CPD for all nodes is computed using the re-
versible MAX operation, which is potentially expensive if there are lots of principal
components in the canonical form. With the simplified expression for the EYG, this
step is eliminated leading to improvements in the run-time.

This approximation is validated by the results shown for two of the largest ITC’99
benchmarks in Fig. 4. It contains the EYG values of all gates in the circuit that were
considered for resizing. The figure compares the EYG obtained using ∆µx, ∆σx and
∆Cxy terms against using ∆µx terms alone. It can be see that the two match very
closely. These trends were observed for the other benchmarks too. This simplified ex-
pression has practical value in terms of run-time since for each evaluation of the yield-
gradient, there is only ∆µx to be evaluated. This is illustrated with the improvement
in run-time in Table III. The improvement is as high as 35% for the b05 benchmark.
The final yield and the area penalty reported in the table also shows using only ∆µx

to evaluate EYG produces results similar to that on using the complete EYG.

4. MULTI-NODE RESIZE

Instead of resizing one node per iteration as described in section 3.3, multiple nodes
can be upsized simultaneously in every iteration. For resizing multiple nodes in an
iteration we need to look at the effect of changing the size of node n on the EYG of
another node m. If EYGm were to remain positive even after resizing the node n, then
m and n can be resized simultaneously.

Changing the size of a node n changes the EYG of another node m due to a potential
change in the PD and CPD associated with that node. This change in the PD and CPD
is reflected as a change in αm (see equation (12)). If the criticality of node m is already

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:11

0 0.5 1 1.5

0

0.5

1

1.5

EYGone level

E
Y

G
o
n
ly

δ
µ

0 0.2 0.4 0.6

0

0.2

0.4

0.6

EYGone level

E
Y

G
o
n
ly

δ
µ

(a)b18 (b)b19

Fig. 4: Comparison of EYG evaluated using ∆µx, ∆σx and ∆Cxy and using ∆µx alone
for some of the large ITC’99 benchmarks

Benchmark
Area overhead(%)[Final yield(%)] Improvement
EYGcomplete EYGonly ∆µ in run-time(%)

b01 23.76[96.62] 24.11[96.64] 18.49
b02 10.65[95.46] 10.65[95.46] 11.45
b03 7.93[98.35] 7.93[98.35] 10.36
b04 3.42[98.69] 3.10[98.65] 33.45
b05 4.75[99.02] 4.49[99.09] 35.46
b06 14.33[95.72] 14.33[95.72] 17.16
b07 3.01[99.80] 3.01[99.80] 19.39
b08 8.89[95.97] 8.89[95.97] 12.92
b09 6.73[82.40] 6.02[82.35] 20.75
b10 11.01[99.30] 8.86[99.20] 28.82
b11 4.45[94.68] 4.25[94.54] 33.72
b12 2.65[99.49] 2.36[99.24] 24.61
b13 2.02[99.86] 1.35[99.73] 22.88
b14 2.98[96.15] 2.81[95.98] 21.95
b15 1.25[98.68] 1.13[98.52] 22.95
b17 1.70[99.87] 1.82[99.87] 15.36
b18 2.83[97.01] 2.52[96.84] 10.78
b19 2.17[96.01] 2.16[95.41] 9.53
b20 1.20[98.53] 1.12[98.26] 18.88
b21 0.55[99.33] 0.50[99.15] 15.09
b22 0.59[99.87] 0.59[99.87] 13.12

Table III: Comparison of area penalty and the final yield achieved using EYG evalu-
ated with ∆µx, ∆σx and ∆Cxy and with ∆µx alone for ITC’99 benchmarks. Also shown
is the percentage improvement in run-time on using ∆µx alone.

very high (large αm), the change in its EYG will be marginal as seen from Figure 5.
The figure shows that for large α, the change in the coefficients due to a change in
α is small. On the other hand, the figure shows that for medium and low criticality
nodes, the coefficients can change significantly with a changing α. However, we only
wish to eliminate nodes that would be falsely resized i.e. nodes for which EYG changes
from positive to negative due to a perturbation in αm. This typically occurs when EYG
of node m is small to begin with. Therefore, we can use a threshold for the EYG and
resize all the gates above the threshold simultaneously.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:12

−4 −2 0 2 4
−1

−0.5

0

0.5

1

α

Φ(α)

−4 −2 0 2 4
−1

−0.5

0

0.5

1

α

f(α)

−4 −2 0 2 4
−1

−0.5

0

0.5

1

α

g(α)

t = 2.0 t = 1.0 t = 0.5 t = 0.0

t = −0.5 t = −1.0 t = −2.0

Fig. 5: Plots of coefficients used in evaluating the derivatives required for computation
of the YG

We use a dynamic threshold that is a fraction (k) of the maximum EYG (EYGmax) in
every iteration. Dynamic threshold is used because the values of EYG change in every
iteration and can have a different range of values for different circuits. The trade-off
here is the run-time versus area penalty. With multi-node resize, there will always be
some gates that are resized unnecessarily resulting in an area penalty. However, this
increase is very marginal as will be seen in the results.

5. SIMULTANEOUS GATE SIZING AND VT ASSIGNMENT

Standard cell libraries with multiple threshold voltages (VT) are typically used to re-
duce the leakage power. In order to optimize timing yield while minimizing the nomi-
nal value of the leakage power, the cost λ in the EYG formulation is changed to leakage
power. With this, EYGn for node n can be written as:

∆Y

∆P
= φ

(

Tspec − µc

σc

)

×
1

σc

×

[

−

(

dµc

dP

)

n

−

(

Tspec − µc

σc

)(

dσc

dP

)

n

]

(13)

where ∆P represents the change in total leakage power of the circuit upon changing
the size or VT of a gate. Depending on the state of the system, the leakage power
can increase or decrease every-time a gate is changed, so that ∆P can be positive
or negative. Since our objective is to minimise power, we redefine EYG as EYG=∆P

∆Y
=

(

∆Y
∆P

)−1
and choose the gate with the minimum EYG as the candidate for change. Once

again, the simplified expression for the EYG can be used for the optimization.
In the case of gate sizing, there exists a monotonic relationship between the size

of a gate and its edge delays. Upsizing a gate guaranteed a reduced nominal delay
value of the gate at the cost of increased power/area. Decreasing VT also guarantees
this monotonic relationship. However, there are also scenarios like simultaneously in-
creasing size and increasing VT which may or may not lead to a decreased nominal
delay. As a result, the search space is much larger and unless the metric (∆Y) can be
evaluated efficiently, the optimization becomes impractical for large circuits. Since our
expression for the analytical EYG can be evaluated efficiently, we can afford to have
a larger search space. Nevertheless, we also propose some algorithms for pruning the
search space and replacing multiple gates in each iteration, making it possible to opti-
mize large circuits. The other issue is the initial state for the optimization algorithm.
Although the final solution is relatively insensitive to the initial state, the run time is
significantly affected. In this paper we have explored two possibilities. The first uses

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:13

the lowest leakage power state as the initial state for the algorithm. This corresponds
to assigning the highest VT and lowest size to all gates in the circuit. This state is de-
noted as I1. In the second case, we first do a deterministic gate-sizing and VT assign-
ment so that the circuit meets the nominal timing specification while minimizing the
nominal leakage power. This is obtained using Design Compiler from Synopsys. Fol-
lowing this, gates corresponding to all the low criticality nodes that are pruned before
the optimization procedure, are replaced by the lowest leakage equivalent. This state,
denoted I2, is then used as the initial state for the statistical timing yield optimiza-
tion. For each of the initial states, a major issue is the search space or equivalently, the
number of EYG evaluations in each iteration. This is discussed in more detail in the
following subsections.

5.1. Optimization starting with I1

With a view to prune the search space, corresponding to each gate type, we create a list
Lg of (size,VT) combinations. The list is sorted in increasing order of the leakage power.
Figure 6 shows ∆P

∆Y
for a resized gate in the ith iteration as a function of the index in the

list. It is clear that the EYG increases as the index increases so that the combination
with lowest EYG is most likely to be the immediate neighbour in the list. We also have
the additional constraint that ∆Y should be positive. With this in mind, we propose
the steps outlined in Algorithm 3(a) to pick the candidate gate. Corresponding to the
initial state, the index of each list points to the first element in the list Lg. The EYG
of size/VT combinations that have an index higher than the current index is evaluated
until a combination that has a positive ∆Y is obtained. The EYG of this combination
is assumed to be the EYG of the gate and the index is advanced to this element. This
is reasonable since the EYG is only likely to increase further with an increasing index.
For the optimization, as before, the candidate list L in Algorithm 2 contains the list of
all unpruned gates. Steps 7 to 10 in Algorithm 2 are now replaced by Algorithm 3(a)
and the gate with the smallest EYG is chosen for replacement.

0 5 10 15 20

0

5

10

15

20

index in sorted list (Lg)

∆
P

∆
Y

b14 b15

b17 b18

(a)First iteration

0 5 10 15 20

0

20

40

index in sorted list (Lg)

∆
P

∆
Y

b14(#6) b15(#5)

b17(#4) b18(#3)

(b) ith iteration shown in the legend as #i

Fig. 6: ∆P
∆Y

evaluated in Algorithm 3(a) for various indices in the sorted list Lg for the

gate whose (size,VT) was changed in the ith iteration of optimization

5.2. Optimization using I2

The state I2 contains gates with (size,VT) combinations that have been optimized so
that the circuit meets the nominal timing specification. Therefore corresponding to the
initial state the index in Lg is in an arbitrary position for each gate. To optimize the
timing yield, both VT and size can be either reduced or increased. All candidates with
a higher VT and size could potentially improve the yield with reduced leakage power.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:14

ALGORITHM 3: Select next gate(Gate g, List Lg(g), Index i)

g: gate type;
Lg(g): list of gates of type g sorted based on leakage power;
i: index of current (size,VT) of gate in list L(g)

(a)I1–Explore (size,VT) till∆Y>0

1: j ← i+ 1
2: EY G← −∞
3: ∆Y ← −∞
4: while j <size(L(g)) and ∆Y < 0 do
5: Evaluate∆Y using the jth element

ofLg(g)
6: ∆P ←Leakage Power(j) - Leak-

age Power(i)
7: if ∆Y > 0 then
8: EYG← ∆Y

∆P
9: end if
10: Increment j
11: end while
12: return EYG, (size,VT) of (j − 1)th in-

dex of Lg

(b) I2(i) – Explore higherVT and size
first then explore usingLg

1: (l, VTm
)←(size,VT) of index i in Lg(g)

2: (p, q)← (l + 1,m− 1) {VTm−1
> VTm

}
3: EYG← −∞
4: ∆Y ← −∞
5: while Leakage Power(p, VTq

) < Leak-
age Power(l+ 1, VTm

) and ∆Y < 0 do
6: Evaluate ∆Y using the (size p, VTq

)
7: ∆P ← Leakage Power(p, VTq

)−
Leakage Power(l, VTm

)
8: if ∆Y > 0 then
9: EYG← ∆P

∆Y
10: return EYG, (size p,VTq

)
11: end if
12: Increment p
13: end while
14: j ← i+ 1
15: while j <size(L(g)) and ∆Y < 0 do
16: Evaluate ∆Y using the jth element

ofLg(g)
17: ∆P ← Leakage Power(j) - Leak-

age Power(i)
18: if ∆Y > 0 then
19: EYG← ∆Y

∆P
20: end if
21: Increment j
22: end while
23: return EYG, (size,VT) of (j − 1)th in-

dex of Lg

However, if the VT is much higher, this probability drops rapidly. Therefore, we only
search among candidates with the next higher VT . If a positive ∆Y is not obtained,
the search continues in the sorted list Lg starting with the current variant of the gate.
This method of searching is depicted pictorially in Figure 7(a). This is also shown in
Algorithm 3(b). The first while loop in Algorithm 3(b) searches through the higher VT

gates and the second while loop searches the list Lg. We also tried to prune the search
space further by ignoring the sorted list and searching for a suitable combination as
shown in figure 7(b). Although it led to a significant improvement in the runtime for
the same final yield, the final leakage power was much higher in some of the larger
benchmarks. This is illustrated in Table IV, which shows the increase in leakage power
for some of the large ITC benchmarks upon using the two search schemes in Fig. 7.
Therefore, for all results, the method in Figure 7(a) was adopted.

6. RESULTS

This section comprises of two subsections. The first part contains results obtained on
using discrete gate sizing to achieve target yield with the area as the cost. The second
part contains the results for the simultaneous gate sizing and VT assignment experi-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:16

Bench- Circuit size Final yield(%)[Area overhead(%)] Run-time (s)
mark # edges[# gates] Numerical YG EYGonly δµ Numerical EYGonly δµ

b10 324[121] 99.28[9.40] 99.20[8.86] 18.65 0.71
b11 776[282] 92.69[4.41] 94.54[4.25] 168.71 2.69
b12 1823[688] 99.87[4.46] 99.24[2.36] 720.12 5.36
b13 520[211] 99.85[7.65] 99.73[1.35] 21.36 0.27
b14 7946[2750] 97.00[4.21] 95.98[2.81] 82586.01 138.89
b15 11990[3985] 99.51[4.09] 98.52[1.13] 196229.73 211.64
b17 38829[12829] 99.87[0.76] 99.87[1.82] 752031.43 1332.47
b20 16736[5696] 99.87[2.58] 98.26[1.12] 424247.07 269.86
b21 17166[5901] 99.87[0.75] 99.15[0.50] 123906.29 111.64
b22 24807[8472] 99.87[0.43] 99.87[0.59] 145922.30 210.26

Average 98.77[3.87] 98.44[2.48] 172585.17 228.38

Table V: Comparison of final yields, area overhead and ratio of run-times between the
analytical and numerical yield gradients for some of the ITC’99 benchmarks

b0
1

b0
2

b0
3

b0
4

b0
5

b0
6

b0
7

b0
8

b0
9

b1
0

b1
1

b1
2

b1
3

b1
4

b1
5

b1
7

b1
8

b1
9

b2
0

b2
1

b2
2

0

20

40

60

80

100

F
in

a
l

y
ie

ld
(%

)

serial k = 0.5 k = 0.3 k = 0.1 k = 0.0

Fig. 8: Comparison of final yield achieved at the end of optimization for different values
of k

b0
1

b0
2

b0
3

b0
4

b0
5

b0
6

b0
7

b0
8

b0
9

b1
0

b1
1

b1
2

b1
3

b1
4

b1
5

b1
7

b1
8

b1
9

b2
0

b2
1

b2
2

1

10

100

S
p

ee
d

u
p

(%
) k = 0.5 k = 0.3 k = 0.1 k = 0.0

Fig. 9: Speedup with respect to the serial resizing for different values of k

plotted. k = 0 corresponds to resizing all nodes with positive EYG in every iteration.
For all the cases the simplified expression for the EYG is used. Fig. 8 shows that the
final yields for the different thresholds are comparable to the serial case. Choosing
all nodes with positive EYG for resizing in each iteration has the maximum benefit
in terms of run-time(∼35×) at an average ∼1.5% increase in area overhead over the
serial case.

6.2. Simultaneous gate sizing and VT assignment

Figure 10 compares the final yield achieved on using the two different initial condi-
tions I1 and I2 and using Algorithms 3(a) and (b) to choose the (size,VT) of gates. It
is clear from the figure that the final yield achieved using the two initial conditions
is practically the same for all the benchmarks. Table VII compares the final leakage
power and the number of iterations for convergence between using the two different
initial states I1 and I2. For the larger benchmarks, convergence was not achieved even
after 2+ days of run-time. So the multi-node resize described in the section 4 was used

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:17

Benchmark Serial k = 0.5 k = 0.3 k = 0.1 k = 0.0

b01 24.11 25.18 22.70 25.89 28.37
b02 10.65 10.65 10.65 10.65 10.65
b03 7.93 7.93 8.20 8.20 8.20
b04 3.10 3.10 3.10 3.10 3.32
b05 4.49 4.82 4.82 4.58 4.68
b06 14.33 14.33 14.60 14.33 14.60
b07 3.01 3.01 3.01 3.01 3.34
b08 8.89 8.89 8.89 8.70 8.70
b09 6.02 6.02 6.33 6.33 6.63
b10 8.86 9.49 8.86 9.49 9.49
b11 4.25 4.41 4.57 4.73 4.69
b12 2.36 2.67 2.79 2.95 3.89
b13 1.35 1.83 1.83 1.78 1.97
b14 2.81 2.90 2.83 3.21 3.40
b15 1.13 1.27 1.31 1.47 1.74
b17 1.82 1.74 1.47 1.44 2.09
b18 2.52 2.89 2.78 3.02 4.27
b19 2.16 2.00 1.90 1.84 2.46
b20 1.12 1.19 1.24 1.42 1.79
b21 0.50 0.66 0.71 0.66 1.14
b22 0.59 0.62 0.63 0.56 1.11

Average 16.36 16.72 15.98 16.96 17.87

Table VI: Comparison of increase in area for various values of EYGthresh = k×EYGmax

for ITC’99 benchmarks

b0
1

b0
2

b0
3

b0
4

b0
5

b0
6

b0
7

b0
8

b0
9

b1
0

b1
1

b1
2

b1
3

b1
4

b1
5

b2
0
b
1
7

b
1
8

b
1
9

b
2
1

b
2
2

0

20

40

60

80

100

F
in
al

y
ie
ld
(%

)

I1 I2(i)

Fig. 10: Comparison of final yield on using two different initial states.

to improve the number of iterations for convergence. It is clear from the table that the
final leakage powers attained in the two cases are almost the same in most cases, indi-
cating that the final state is more or less independent of the initial state. The number
of iterations for convergence is also significantly smaller when initial state I2 is used,
which leads to the decreased runtime as seen in the speedup column of the table.

Fig. 11(a) and (c) compare the PDFs obtained PDF obtained by performing SSTA on
the following states of the circuit:

— DC PDF: circuit state provided by the Synopsys Design Compiler
— I1 init. PDF: All gates are assigned highest VT and lowest size
— I2 init. PDF: All gates which were pruned in the first iteration are assigned highest

VT and lowest size

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:18

Bench- Final power(µW) # iterations
Speedup

mark I1 I2(i) I1 I2(i)

Serial resizing
b01 0.26 0.27 60 52 1.19
b02 0.15 0.16 42 31 1.66
b03 4.84 4.85 621 454 1.69
b04 1.63 1.73 85 38 3.66
b05 1.71 1.83 161 105 1.92
b06 0.24 0.26 49 27 2.36
b07 1.11 1.19 57 37 2.10
b08 0.59 0.61 75 39 2.46
b09 0.62 0.62 78 29 3.85
b10 0.61 0.65 67 29 3.75
b11 1.32 1.40 94 40 4.16
b12 2.96 3.07 91 26 5.17
b13 1.05 1.10 59 30 2.67
b14 23.99 24.85 4980 2667 3.27
b15 41.17 40.21 8392 4468 2.80
b20 70.23 73.34 13821 8595 1.37

Multi-node resize: Threshold = 2×EYGmin

b17 232.53 226.42 2193 828 2.76
b18 466.13 474.38 2540 381 8.99
b19 852.81 590.95 3834 175 12.78
b21 64.39 67.51 521 137 2.34
b22 95.97 97.89 649 162 4.73

Ave 88.78 76.82 1832 874 3.60

Table VII: Comparison of final power, number of iterations for convergence and
speedup between using the two initial states I1 and I2. Speedup = Run-time(I1)

Run-time(I2(i)) .

It is clear from the Figures 11(a) and (c) that assigning highest VT and lowest size
to the pruned gates has practically no effect on the circuit delay. Figures 11(b) and(d)
compare the final PDFs obtained on using the two different initial states. From the
figures, it is clear that the final PDFs match very closely independent of the initial
states.

Table VIII compares the increase in leakage power with respect to the circuit state
provided by Design Compiler. The values are typically negative when the initial yield
was > 50% i.e. µc < Tspec like the example in Figure 11(a). When the Tspec is aggressive
like the case in Figure 11(c), the increase in leakage power is positive. This behaviour
is expected, since an aggressive Tspce requires larger number of gates to be in lower VT

or higher size state leading to an increased leakage power.
Table IX compares the area and power overhead obtained using (a) Gate resizing

alone and (b) Gate resizing and VT assignment. In both cases, the lowest VT variant
was used for the initial state. For (a) EYG was evaluated with area as the cost and
for (b), it was the leakage power. As expected, the area overhead is smaller for case
(a) and the leakage power is lower in case (b). However, the final area achieved in
case (b) is only marginally higher than for case (a), while a significant reduction in
the leakage power is achieved. The actual values will depend on how aggressive the
timing specification is and the structure of the circuit (fraction of gates that have low
criticality).

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:20

Bench Resizing alone Size/VT assignment
mark Final

yield(%)
Area over-
head (%)

δP (%) Final
yield(%)

Area over-
head (%)

δP (%)

Serial resizing
b01 96.64 24.11 74.75 96.21 29.96 42.31
b02 95.46 10.65 47.59 95.40 13.02 42.98
b03 98.35 7.93 27.14 86.80 11.80 -6.16
b04 98.65 3.10 10.20 98.81 7.96 -23.31
b05 99.09 4.49 16.99 98.85 13.39 8.80
b06 95.72 14.33 50.12 94.09 15.23 38.82
b07 99.80 3.01 10.28 99.87 4.22 -35.71
b08 95.97 8.89 34.15 94.66 9.70 -0.88
b09 82.35 6.02 21.19 82.90 10.04 13.95
b10 99.20 8.86 33.78 98.91 13.19 26.74
b11 94.54 4.25 13.52 96.18 14.43 -3.77
b12 99.24 2.36 8.54 99.87 16.17 -5.25
b13 99.73 1.35 5.14 99.87 2.98 -41.35
b14 95.98 2.81 9.04 96.84 8.53 -27.39
b15 98.52 1.13 4.65 95.34 5.14 -44.03
b20 98.26 1.12 4.12 99.75 11.86 -15.90

Multi-node resize: Threshold = 2×EYGmin

b17 99.87 1.74 5.67 99.85 4.56 -45.37
b18 96.67 2.89 9.05 95.34 5.14 -44.03
b19 95.92 2.00 6.49 94.67 5.37 -45.18
b21 99.60 0.66 2.59 99.96 3.57 -36.20
b22 99.89 0.62 2.38 99.90 1.35 -53.43

Average 97.12 5.34 96.38 9.89

Table IX: Comparison of increase in area and leakage power between resizing and
simultaneous VT assignment and sizing.

optimization with (a) area and (b) nominal leakage power as the cost. The first corre-
sponds to the discrete gate sizing problem and the second to simultaneous size and VT

assignment.
With the use of this analytical yield gradient, it is possible to optimize the timing

yield for relatively large circuits. However as the circuit size grows (100,000 gates), the
runtime is still very large. To address this, we propose a heuristic for resizing/changing
VT of multiple gates in each iteration of the optimization algorithm. This proves to be
very effective, giving an average of 35× speedup at the cost of a marginal area over-
head. Another advantage of our simplified yield gradient expression is that it makes it
possible for us to explore a larger search space in each iteration. We have demonstrated
this for the case of simultaneous resizing and VT assignment.

A. EVALUATION OF DERIVATIVES FOR THE ANALYTICAL YG
dµc

dµx

, dµc

dσx

and dµc

dCxy

required for evaluation of the analytical YG are evalu-

ated using Clark’s formulas. ATs/RTs and PDs are evaluated using Block based
SSTA[Visweswariah et al. 2004; Chang and Sapatnekar 2005] and are thus expressed

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:21

in the canonical form. Therefore, the PD x of node n in canonical form is given by:

x = µx +

M
∑

i=1

xipi + xM+1r (14)

where pi are the principal components, r is the independent random component and

xi are the sensitivities to each of the components. With θ =
√

σ2
x + σ2

y − 2Cxy, αn =
(

µx−µy

θ

)

and t =
(σ2

x
−σ2

y)
θ2 the derivatives dµc

dµx

, dµc

dσx

, dµc

dCxy

, dσc

dµx

, dσc

dσx

and dσc

dCxy

can be

evaluated using Clark’s formula[Clark 1961] as:

dµc

dµx

= Φ(αn),
dµc

dσx

=
σxφ(αn)

θ
,

dµc

dCxy

= −
φ(αn)

θ
(15)

dσc

dµx

=
θ

2σc

[

2αnΦ(αn)Φ(−αn)− φ(αn) [2Φ(αn)− 1] + tφ(αn)

]

= f(αn, t)×
θ

2σc

(16)

dσc

dCxy

=
1

2σc

[

2φ2(αn) + αnφ(αn) [2Φ(αn)− 1] + tαnφ(αn)

]

= g(αn, t)×
1

2σc

(17)

dσc

dσx

= Φ(αn)
σx

σc

− σx

dσc

dCxy

(18)

where φ and Φ are the PDF and CDF of the standard normal distribution respectively.
Φ(αn) represents the criticality of the node n.

B. LOWER BOUND OF σC

Before we find the lower bound for σc, we prove some properties of the following func-
tion

h(α) =
(µc − µx)(µc − µy)

θ2
(19)

= φ2(α) + φ(α)α (Φ(α)− Φ(−α))− α2Φ(α)Φ(−α) (20)

Here µc is the mean of the circuit delay and α is as defined in Appendix A. h(α) has
the following properties:

(1) h(α) > 0 and limα→−∞ h(α) = limα→+∞ h(α) = 0
This property follows from the fact that µc > max(µx, µy) [Ramprasath and Va-
sudevan 2012] and tends to µx (µy) as α tends to ∞ (−∞).

(2) h(α) ≤ Φ(α).
Let f(α) = Φ(α)− h(α).

f(α) = Φ(α)− φ2(α)− φ(α)α (Φ(α)− Φ(−α)) + α2Φ(α)Φ(−α) (21)

df

dα
= 2Φ(−α) [φ(α) + αΦ(α)] (22)

The proof for [φ(α) + αΦ(α)] ≥ 0 can be found in [Ramprasath and Vasudevan

2012]. This implies
df

dα
≥ 0. Therefore f(α) is monotonically increasing function of

α. Also, as α → −∞, f(α) → 0 since both Φ(α) and h(α) tend to 0.
The two facts:
(a) f(α) is a monotonically increasing function of α
(b) f(α) → 0 as α → −∞

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:22

−4 −2 0 2 4
0

0.25

0.50

0.75

1.00

α

f
(α

)

Fig. 12: Plot of f(α) showing that it is an increasing function of α

together imply that f(α) ≥ 0. This is also seen in Figure 12.
(3) h(α) is an even function. This property directly follows from the definition of h(α).

h(−α) = φ2(α)− φ(α)α (Φ(−α)− Φ(α))− α2Φ(α)Φ(−α) = h(α) (23)

(4) h(α) ≤ Φ(−|α|).
As h(α) is an even function, from property (1) we have h(−α) = h(α) ≤ Φ(−α).
Since h(α) ≤ Φ(α) and h(α) ≤ Φ(−α), we have h(α) ≤ Φ(−|α|).

(5) h(α) ≤ φ2(0).

dh

dα
= φ(α) [Φ(α)− Φ(−α)]− 2αΦ(α)Φ(−α) (24)

d2h

dα2
= αφ(α) [(Φ(α)− Φ(−α))] + 2φ2(α)− 2Φ(α)Φ(−α) (25)

When α = 0,
dh

dα
= 0 and

d2h

dα2
= −2

(

Φ2(0)− φ2(0)
)

< 0 , indicating h(α) has a local

maxima at α = 0. h(α) is upper bounded by Φ(−|α|) and Φ(−|α|) is a decreasing
function for α > 0. Φ(−|α|) attains the value of φ2(0), when α ≈ 0.9979. This implies
h(α) < φ2(0) when α > 0.9979. The same argument holds when α < −0.9979. The
plot of h(α) in the range α ∈ [−0.9979, 0.9979] is shown in Fig. 13, where it is clearly
seen to have only one maxima. Therefore, φ2(0) is also a global maxima.

−2 0 2
0

0.1

0.2

φ2(0)

α

h
(α

)

h(α)
Φ(−|α|)

Fig. 13: Plot of h(α) showing its maxima of φ2(0)

Using these properties, we show that σc ≥ F ×min(σx, σy) if ρxy ≥ 0.
Proof :
Using (µc − µy) = θ [αΦ(α) + φ(α)] and (µc − µx) = θ [−αΦ(−α) + φ(α)], σc can be writ-
ten as:

σ2
c = σ2

xΦ(α) + σ2
yΦ(−α)− (µc − µx)(µc − µy) (26)

= σ2
xΦ(α) + σ2

yΦ(−α)− θ2h(α) (27)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:23

Let F be some constant and σy ≤ σx. The largest F so that σz is always greater than
F × σy = F ×min(σx, σy) is required to get a tight bound.

F 2σ2
y − σ2

c = σ2
y(F

2 − Φ(−α))− σ2
xΦ(α) + θ2h(α) (28)

= σ2
y(F

2 − Φ(−α) + h(α))− σ2
x(Φ(α)− h(α))− 2ρxyσxσyh(α) (29)

Under the assumption ρxy ≥ 0,

F 2σ2
y − σ2

c ≤ σ2
y(F

2 − Φ(−α) + h(α))− σ2
x(Φ(α)− h(α))− 2ρxyσ

2
yh(α) (30)

≤ σ2
y(F

2 − 1 + 2h(α)) + (Φ(α)− h(α))(σ2
y − σ2

x) (31)

From the properties of h(α), Φ(α) ≥ h(α) and under the assumption σy ≤ σx, the second
term in equation (31) is always negative. Using the fact that h(α) ≤ φ2(0), the value of
F for which the right hand side remains negative independent of α is:

F 2 − 1 + 2h(α) ≤ 0 =⇒ F ≤
√

1− 2φ2(0) =

√

1−
1

π
(32)

The same steps can be repeated for σx ≤ σy to achieve the same value of F . This im-
plies σc ≥ F×min(σx, σy). Fig. 14 shows the plot of σc vs its lower bound F×min(σx, σy).
MAX operation follows the shifting and scaling properties. So without loss of gener-
ality it can be assumed that σy ≤ σx, σx = 1.0 and µy = 0.0. The plot is generated
using the following range of values: ρxy = [0.0 : 0.1 : 1.0], σy = [0.02 : 0.02 : 1.0] and
α = [−5.0 : 0.1 : 5.0].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

σc

F
×

m
in
(σ

x
,σ

y
)

Fig. 14: σc vs (F ×min(σx, σy))

C. SIMPLIFICATION OF THE EXPRESSION FOR YG

The simplification of EYG expression is done in two steps. The first step involves sim-

plification of the
∆µc

∆λ
term as shown below:

C.1. Simplification of

(

dµc

dλ

)

n

To approximate
(

dµc

dλ

)

n
we use a bound derived in [Ramprasath and Vasudevan 2012]:

— The upper bound for σ
µ

of the PD is the maximum value of σ
µ

over all edges in the

circuit graph.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:24

For the current day technologies,
σ

µ
of edge delay lies between 10% and 20%. This

implies:

∆σx

∆λ
≪

∆µx

∆λ
(33)

Now Cxy = ρxyσxσy. Assuming that the correlation coefficient does not change much
on replacing the gate, we have

∆Cxy

∆λ
≈ ρxyσy

∆σx

∆λ
(34)

This is reasonable since the change in the correlation coefficient between paths due
to change in the size of a single gate is marginal. Using equation (34) the term
[

dµc

dσx

× ∆σx

∆λ
+ dµc

dCxy

× ∆Cxy

∆sn

]

can be simplified as :

dµc

dσx

×
∆σx

∆λ
+

dµc

dCxy

×
∆Cxy

∆sn
≈

φ(α)

θ
×

∆σx

∆λ
× [σx − ρxyσy] (35)

Now

0 ≤
|σx − ρxyσy|

θ
≤ 1 (36)

{

∵ 1−

(

σx − ρxyσy

θ

)2

=
(1− ρ2xy)σ

2
y

θ2
≥ 0

}

Using (36) in (35), we get
∣

∣

∣

∣

dµc

dσx

×
∆σx

∆λ
+

dµc

dCxy

×
∆Cxy

∆sn

∣

∣

∣

∣

≤ φ(α)×
∆σx

∆λ
(37)

Equation (37) indicates we are left with the two terms: Φ(α)×∆µx

∆λ
and φ(α)×∆σx

∆λ
. Since

typically Φ(α) > φ(α) or Φ(α) has magnitude close to φ(α), using (33), φ(α) ×
∆σx

∆λ
≪

Φ(α)×
∆µx

∆λ
. Therefore

(

dµc

dλ

)

n

≈ Φ(α)×
∆µx

∆λ
(38)

The second step involves simplification of the
∆σc

∆λ
term as shown below:

C.2. Simplification of

(

dσc

dλ

)

n

To approximate
(

dσc

dλ

)

n
, we use the bounds derived for σc.

— σc ≤ max(σx, σy). This result is proved in [Ramprasath and Vasudevan 2012]

— σc ≥ F ×min(σx, σy) where F =
√

1− 1
π

. Proved in Appendix B.

(

dσc

dλ

)

n
is given by:

(

dσc

dλ

)

n

=
dσc

dµx

×
∆µx

∆λ
+

dσc

dσx

×
∆σx

∆λ
+

dσc

dCxy

×
∆Cxy

∆λ
(39)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:25

where dσc

dµx

, dσc

dCxy

and dσc

dσx

are given by equations (16), (17) and (18). Using (34),
(

dσc

dλ

)

n

can be written as:
(

dσc

dλ

)

n

≈ f(α, t)
θ

2σc

∆µx

∆λ
+Φ(α)

σx

σc

∆σx

∆λ
− g(α, t)

[

(σx − ρxyσy)

θ

]

θ

2σc

∆σx

∆λ
(40)

where f(α, t) and g(α, t) are defined in equations (16) and (17). Fig. 5 shows the plots
of f(α, t) and g(α, t) for various values of t. It is clear from the figure that f(α, t) and

g(α, t) have similar magnitudes. Using the argument ∆µx

∆λ
≫ ∆σx

∆λ
and

|σx−ρxyσy|
θ

≤ 1,

we can neglect the third term in equation (40) in comparison to the first. So
(

dσc

dλ

)

n
can

be written as:
(

dσc

dλ

)

n

≈ f(α, t)
θ

2σc

∆µx

∆λ
+Φ(α)

σx

σc

∆σx

∆λ
(41)

Two different cases are considered depending on the criticality of the node:

(1) Low and medium criticality nodes:
In this case, Φ(α) and f(α, t) have similar magnitudes as shown in Fig. 5. Recall

that ∆µx

∆λ
≫ ∆σx

∆λ
. Therefore if θ and σx have comparable values or θ > σx, we can

neglect the second term in comparison to the first. It is easily seen to be true when
ρxy < 0 since θ ≥ σx. If ρxy > 0, it is also seen to be true for the extreme cases when
(a) σx ≫ σy, then θ ≈ σx and (b) σy ≫ σx, then θ > σx. In other cases, the lower

and upper bounds of σc gives us an upper bound for σx

σc

and a lower bound for θ
σc

as

follows. The upper bound of σx

σc

can be written as:

σx

σc

≤

h×
1

F
, if h > 1

1

F
if h ≤ 1

(42)

where h = σx

σy

. The lower bound of θ
σc

can be written as

θ

σc

≥

√

σ2
x + σ2

y − 2ρxyσxσy

max (σx, σy)
=

(

θ

σc

)

LB

(43)

(

θ

σc

)

LB

=

√

1 +
1

h2
− 2

ρxy
h

, if h ≥ 1
√

1 + h2 − 2ρxyh, if h < 1
(44)

If σx and σy have comparable values, h ≈ 1, the upper bound for σx

σc

gives σx

σc

≤
1

F
≈1.21. Fig. 15 shows the plot of lower bound of θ

σc

for various values of ρxy

and h. The figure indicates that θ
σc

to a large extent is of the order of 1.0. Since
∆µx

∆λ
≫ ∆σx

∆λ
, the second term in equation (41) can be neglected in comparison with

the first. Thus
(

dσc

dλ

)

n
can be approximated as:

(

dσc

dλ

)

n

= f(α, t)
θ

2σc

∆µx

∆λ
(45)

(2) For the high criticality nodes and nodes for which both ρxy and h are ∼1,
(

Φ(α)σx

σc

∆σx

∆λ

)

dominates the
(

f(α, t) θ
2σc

∆µx

∆λ

)

. So ignoring the δσx terms in this

scenario leads to an erroneous dσc

dλ . Although there is an error, it will not make

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:26

0 0.2 0.4 0.6 0.8 1
10−1

100

101

ρxy

(

θ σ
c

)

L
B

h = 0.6 h = 0.8

h = 1.0 h = 1.2

h = 1.4

Fig. 15: Lower bound of θ
σc

much of a difference in this case since the YG will be dominated by the first term,
namely, ∆µc

∆λ
.

References

D.K. Beece, Jinjun Xiong, C. Visweswariah, V. Zolotov, and Yifang Liu. 2010. Transistor sizing of custom
high-performance digital circuits with parametric yield considerations. In Proceedings of 47th Design
Automation Conference. IEEE, 781 –786.

Hongliang Chang and S.S. Sapatnekar. 2005. Statistical timing analysis under spatial correlations. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. 24, 9 (Sept. 2005), 1467 –
1482. DOI:http://dx.doi.org/10.1109/TCAD.2005.850834

Seung Hoon Choi, B.C. Paul, and K. Roy. 2004. Novel sizing algorithm for yield improvement under process
variation in nanometer technology. In Proceedings of 41st Design Automation Conference. IEEE, 454
–459.

Charles E. Clark. 1961. The Greatest of a Finite Set of Random Variables. Operations Research 9, 2 (1961),
145–162. DOI:http://dx.doi.org/10.1287/opre.9.2.145

A. R. Conn, N. I. M. Gould, and P. L. Toint. 1992. Lancelot: A Fortran Package for Large-Scale Nonlinear
Optimization (Release A) (1st ed.). Springer Verlag.

O. Coudert. 1997. Gate sizing for constrained delay/power/area optimization. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 5, 4 (1997), 465–472. DOI:http://dx.doi.org/10.1109/92.645073

A. Davoodi and A. Srivastava. 2008. Variability Driven Gate Sizing for Binning Yield Optimization.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 16, 6 (june 2008), 683 –692.
DOI:http://dx.doi.org/10.1109/TVLSI.2008.2000252

M.R. Guthaus, N. Venkateswaran, C. Visweswariah, and V. Zolotov. 2005. Gate sizing using incremental
parameterized statistical timing analysis. In IEEE/ACM International Conference on Computer-Aided
Design, 2005. IEEE, 1029 – 1036. DOI:http://dx.doi.org/10.1109/ICCAD.2005.1560213

Eun Ju Hwang, Wook Kim, and Young Hwan Kim. 2013. Timing Yield Slack for Timing
Yield-Constrained Optimization and Its Application to Statistical Leakage Minimization. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on 21, 10 (Oct 2013), 1783–1796.
DOI:http://dx.doi.org/10.1109/TVLSI.2012.2220792

E.T.A.F. Jacobs and M.R.C.M. Berkelaar. 2000. Gate sizing using a statistical delay
model. In Proceedings of Design, Automation and Test in Europe. IEEE, 283 –290.
DOI:http://dx.doi.org/10.1109/DATE.2000.840285

Li Li, Peng Kang, Yinghai Lu, and Hai Zhou. 2012. An efficient algorithm for library-based cell-type se-
lection in high-performance low-power designs. In Computer-Aided Design (ICCAD), 2012 IEEE/ACM
International Conference on. 226–232.

M. Mani, A. Devgan, M. Orshansky, and Yaping Zhan. 2007. A Statistical Algorithm for Power- and
Timing-Limited Parametric Yield Optimization of Large Integrated Circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 26, 10 (Oct. 2007), 1790 –1802.
DOI:http://dx.doi.org/10.1109/TCAD.2007.895797

M. Mani and M. Orshansky. 2004. A new statistical optimization algorithm for gate sizing. In Computer De-
sign: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings. IEEE International Conference
on. 272–277. DOI:http://dx.doi.org/10.1109/ICCD.2004.1347933

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

XXXX:27

S. Ramprasath and V. Vasudevan. 2012. On the computation of criticality in statistical timing analysis. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 172 –179.

S. Ramprasath and V. Vasudevan. 2014. Statistical Criticality Computation Using the Circuit Delay. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. 33, 5 (May 2014), 717–727.
DOI:http://dx.doi.org/10.1109/TCAD.2013.2296436

J. Singh, V. Nookala, Zhi-Quan Luo, and S. Sapatnekar. 2005. Robust gate sizing by geomet-
ric programming. In Proceedings of 42nd Design Automation Conference. IEEE, 315 – 320.
DOI:http://dx.doi.org/10.1109/DAC.2005.193824

D. Sinha, N.V. Shenoy, and Hai Zhou. 2006. Statistical Timing Yield Optimization by Gate Sizing.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 14, 10 (Oct. 2006), 1140 –1146.
DOI:http://dx.doi.org/10.1109/TVLSI.2006.884166

Debjit Sinha, Chandu Visweswariah, Natesan Venkateswaran, Jinjun Xiong, and Vladimir Zolotov. 2012.
Reversible statistical max/min operation: Concept and applications to timing. In Proceedings of 49th
Design Automation Conference. IEEE, 1067 –1073.

A. Srivastava, K. Chopra, S. Shah, D. Sylvester, and D. Blaauw. 2008. A Novel Approach to Perform Gate-
Level Yield Analysis and Optimization Considering Correlated Variations in Power and Performance.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 27, 2 (Feb. 2008), 272
–285. DOI:http://dx.doi.org/10.1109/TCAD.2007.907227

A. Srivastava, D. Sylvester, and D. Blaauw. 2004. Statistical optimization of leakage power considering
process variations using dual-Vth and sizing. In Design Automation Conference, 2004. Proceedings. 41st.
773 –778.

A. Tang and N.K. Jha. 2015. GenFin: Genetic Algorithm-Based Multiobjective Statistical Logic Circuit Op-
timization Using Incremental Statistical Analysis. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems PP, 99 (2015), 1–1. DOI:http://dx.doi.org/10.1109/TVLSI.2015.2442260

C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walker, S. Narayan, D.K. Beece, J. Piaget, N.
Venkateswaran, and J.G. Hemmett. 2006. First-Order Incremental Block-Based Statistical Timing
Analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 10 (oct.
2006), 2170 –2180. DOI:http://dx.doi.org/10.1109/TCAD.2005.862751

C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan. 2004. First-order Incremental
Block-based Statistical Timing Analysis. In Proceedings of the 41st Annual Design Automation Confer-
ence (DAC ’04). ACM, New York, NY, USA, 331–336. DOI:http://dx.doi.org/10.1145/996566.996663

Jinjun Xiong, V. Zolotov, and C. Visweswariah. 2008. Incremental Criticality and Yield Gra-
dients. In Proceedings of Design, Automation and Test in Europe. IEEE, 1130 –1135.
DOI:http://dx.doi.org/10.1109/DATE.2008.4484830

Yaping Zhan, A.J. Strojwas, Xin Li, L.T. Pileggi, D. Newmark, and M. Sharma. 2005. Correlation-aware
statistical timing analysis with non-Gaussian delay distributions. In Proceedings of the 42nd Design
Automation Conference. 77–82. DOI:http://dx.doi.org/10.1109/DAC.2005.193777

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article XXXX, Pub. date: 2015.

