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Abstract

Switched capacitor circuits are periodically time-varying circuits and the noise at the output of

these circuits is cyclostationary. This noise is therefore characterized by the average and harmonic

spectral densities. In this paper, we extend the method proposed in [1] to compute the average and

harmonic noise spectral densities in periodically varying ciruits. We derive expressions for the average

and harmonic spectral densities and use the mixed-frequency-time technique for the computation. The

results for the average spectral density are compared with published results. The contribution of the

harmonic spectral densities to the average noise spectral density at the output of a cascaded block is

estimated.

Keywords: Circuit noise spectral density, simulation, analog circuits, switched capacitor cir-

cuits

I. I NTRODUCTION

Computation of noise spectral density in periodically varying circuits (and in particular, switched

capacitor circuits) has received considerable attention over several decades. In 1970, Rice [2]

obtained the noise spectral density of a periodically switchedRC circuit driven by white noise.

He used an analytical expression for the time-varying impulse response. This method was later

extended by Tothet al [3] to obtain power spectral density of noise in switched capacitor (SC)

circuits. They solve for the sampled and held noise and continuous time or tracking noise seper-

ately. This approach of splitting the noise into two parts has also been adopted in [4]. Instead of

using series summations to take care of aliased noise, they numerically evaluate complex line in-

tegrals. A different approach was used by Goetteet al [5], who solved the Lyapunov equation to

get the time averaged autocorrelation. Using this along with the discretized z-domain equations

of the network, they obtained the noise spectral density in switched capacitor circuits. In all

three methods [3], [4], [5], the “full and fast charge transfer” approximation is used. This may

not be completely valid in many of the circuits. A SPICE based approach has been proposed by

Fisher [6]. He computed the noise spectral density by converting the SC circuit to an equivalent

RC circuit and then using SPICE for the noise analysis. In order to take into account the aliased

noise, he assumed knowledge of the noise bandwidth.

The average noise spectral density in linear periodically time varying (LPTV) circuits with
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wide sense stationary (WSS) noise sources can be written as:

S(ω) =
M∑
i=1

∞∑
n=−∞

|Hn(ω − nωo)|2Si(ω − nωo) (1)

Here,M represents the total number of noise sources in the circuit and the indexn is used for

the aliasing sidebands.Hn(ω) represents thenth harmonic of the time-varying transfer function

andSi(ω) is the stationary power spectral density of theith noise source. Many of the other

methods proposed for SC circuits are efficient ways to compute equation (1). The adjoint net-

work technique [7] has been used in [8], [9], [10], [11], [12], [13] to make the computation of

noise due to several sources efficient. In addition, the frequency reversal properties of the adjoint

network has been used in [12], [13] to reduce the number of transient simulations required to

compute the effect of aliased noise. In [11], the mixed frequency time technique (MFT) [14],

[15], [16], [17] was used along with Krylov subspace methods to make the computation of the

transfer function efficient.

In LPTV circuits, the output noise is cyclostationary. It is more appropriately characterized by

the instantaneous spectral densityS(t, ω) [18], [19], which is a periodic function of time. Its de-

scription requires both the average and harmonic power spectral densities (HPSDs). Strom and

Signell [20] obtained an expression for the instantaneous spectral density assuming stationary

input noise sources. This was later extended to include cyclostationary noise sources by Roy-

chowdhuryet al [21]. They proposed an efficient harmonic balance based method to compute

the average and the harmonic PSDs of noise.

The most general framework to compute the effects of white noise in any circuit in which

noise can be regarded as a perturbation is the method based on stochastic differential equations

(SDEs) [22], [23]. Demiret al [24] have used this method to get the time-varying covariance

matrix in circuits. An algorithm to compute the average noise spectral density in time-varying

circuits using the methodology of SDEs has been proposed in [1]. The main advantage of this

method is that it can be used for all circuits, including oscillators where the phase noise is non-

stationary. It can also be easily integrated into a standard circuit simulator such as SPICE. Both

stationary and non-stationary noise sources can be included. Also, the effect of all noise sources

can be considered simultaneously. A disadvantage of the method is that, since it is a time-domain

technique, it is relatively expensive to include1/f noise sources.
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In this paper, we extend the algorithm proposed in [1] and develop a new technique to compute

the average and harmonic spectral densities of noise in periodically time-varying circuits. We

derive expressions for the average and harmonic spectral densities and use the mixed-frequency-

time technique for the computation. The algorithm itself is applicable to all periodically varying

circuits. In this paper, we have used it to compute the average and harmonic noise spectral

density in switched capacitor circuits. Although there are several computations of the average

spectral density, we are not aware of any computations done for the harmonic spectral densities

in switched capacitor circuits. As pointed out in [21], both of these are required to build noise

macromodels of time-varying circuits.

This paper is organized as follows. Section 2 summarizes the results of [1]. In Section 3, we

derive expressions for the average and harmonic power spectral densities. Section 4 describes

how the mixed-frequency-time technique can be used for the computation. In section 5, the

application of the algorithm to the spectral density computation in switched capacitor circuits is

discussed and section 6 contains the results.

II. BACKGROUND

The state variable form of the circuit equations without noise sources can be written as:

dx(t)

dt
= F(x(t),v(t)) (2)

wherex(t) is the vector containing the state variables of the circuit andv(t) is the vector of large

signal excitations to the circuit. This can be solved to get the large signal steady state solution

of the circuit,xs(t).

With the noise sources added, the solution is assumed to be of the form:

x(t) = xs(t) + xn(t)

wherexn(t) represents the noise voltages. Since noise is treated as a perturbation, a linearized

form of the state equations along with additive noise sources can be used for noise computations.

The large signal input sources are set to zero. The linearized equations can be written as:

dxn(t)

dt
= A(t)xn(t) + B(t)u(t) (3)
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In this set of equations,A(t) is the Jacobian ofF(·) computed at steady state.B(t) is a ma-

trix containing the spectral intensity of the noise sources andu(t) is the vector containing the

various noise sources, all of which are assumed to be standard Gaussian white noise processes

uncorrelated with each other.

Assume that the noise spectral density is to be determined at node ‘N ’ of the circuit. Let

xnN(t) be the noise waveform at this node. For convenience, it is assumed thatxnN(t) is also a

state variable. We define:

XN(t; ω) =

∫ t

0

xnN(τ)e−jωτdτ (4)

XN(t; ω) is essentially the Fourier transform of a “t-segment” of the noise waveform. The

expected energy spectral density of this finite segment of the waveform,E(t; ω), can be written

as:

E(t, ω) = E{|XN(t; ω)|2}

HereE{·} denotes the expectation operator.

Using the methodology of stochastic differential equations, it can be shown that the energy

spectral density and the cross-spectral density, (Y(t; ω)), are given as [1]:

dE(t; ω)

dt
= YN(t; ω)e−jωt + Y ∗

N(t; ω)ejωt (5)

dY(t; ω)

dt
= A(t)Y(t; ω)(t) + E{xn(t)x∗nN(t)}ejωt (6)

whereY(t; ω) is a vector with:

Yi(t; ω) = E {xni(t)XN(t; ω)∗}

The second term in equation (6) is a vector containing the time-varying variance at the output

node and its cross correlation with other nodes in the circuit. This can be obtained by solving

the differential equations for the time-varying covariance matrix [24], [25], given as:

dK(t)

dt
= K(t)A(t)∗T + A(t)K(t) + B(t)B(t)T (7)

where

Kij(t) = E{xni(t)x
∗
nj(t)}

is the noise correlation matrix.
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In order to obtain the average power spectral density of noise, equations (5), (6) and (7)

need to be integrated in time until a steady stateSo(ω) is obtained. A more detailed derivation

of the equations can be found in [1].

III. A LGORITHM FOR COMPUTATION OF THEAVERAGE AND HARMONIC SPECTRAL

DENSITIES

Since SC circuits are periodically varying circuits, the output noise is cyclostationary (as-

suming that the circuit is stable). Therefore, the autocorrelation and power spectral density of

the output noise are periodic functions of time. The circuit is thus characterized by an instanta-

neous power spectral densityS(t, ω), which is periodic. However, the instantaneous power spec-

tral density is essentially the time derivative of the (time-varying) energy spectral density [26].

Therefore, we can use equation (5) to get:

S(t, ω) =
dE(t; ω)

dt

= YN(t, ω)e−jωt + Y ∗
N(t, ω)ejωt (8)

Since noise is regarded as a perturbation, the set of equations (7), for the covariance matrix,

and (6), for the cross-spectral densities, are linear time-varying equations. Moreover, since both

the input vector (consisting of the noise sources) and the state matrix vary periodically with the

clock, the steady state covariance matrix is a periodic function of the clock. Therefore, each

element of the covariance matrix can be expanded as a Fourier series in terms of the clock. This

can be written as:

K(t) =
∞∑

k=−∞

Cke
jkωot (9)

Here,Ck is the matrix containing thekth Fourier coefficients of the elements of the covariance

matrix. As mentioned previously, the second term in equation (6) is theN th column (or row,

sinceK(t) is real and symmetric),KN(t), of the covariance matrix. It contains the variance of

the output node and its cross-correlation with the other nodes in the circuit. Therefore,

KN(t) =
∞∑

k=−∞

CkNejkωot (10)

Now, consider the set of equations for the cross-spectral densities, equation (6). These equa-

tions are also linear time-varying equations. However, they contain both the “measurement”
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frequencyω (the frequency at which the spectral density is desired), and the clock frequency,

ωc. The “input” vector in equation (6) is effectively a product of a tone atω and the vector

KN(t). Therefore, using equation (10), the set of equations (6) can be written as:

dY(t; ω)

dt
= A(t)Y(t; ω) + ejωt

+∞∑
k=−∞

CkNejkωct (11)

The solutionY(t; ω) will therefore contain components at frequenciesω ± nωc. Since the

differential equations are linear, no other harmonics ofω will be generated. Therefore,Y(t; ω)

can be written as:

Y(t; ω) = ejωt

+∞∑
k=−∞

dk(ω)ejkωct (12)

i.e. it contains a tone atω and several components atnω ± ωc. The vectordk(ω) is the vector

containing the Fourier coefficients of the cross-spectral densities atω.

From equation (8), it is seen that in order to compute the instantaneous spectral density, we

requireYN(t; ω)(= E {xnN(t)XN(t; ω)∗}). Using equation (12) we can substitute forYN(t; ω)

in equation (8). This gives:

S(t, ω) =
∞∑

k=−∞

(dkN(ω)ejkωct + d∗kN(ω)e−jkωct) (13)

Therefore, the average power spectral density atω, S0(ω), and the harmonic spectral densities

Sk(ω) can be written as follows.

So(ω) = d0N(ω) + d∗0N(ω) = 2Re(d0N(ω)) (14)

Sk(ω) = dkN(ω) + d∗−kN(ω) (15)

Clearly, the instantaneous spectral density depends only on the Fourier components ofYN(t; ω).

Therefore, once we obtain the periodic steady-state value ofYN(t; ω), we essentially have the

instantaneous spectral density. This gives us a completely different technique to compute the

average and harmonic spectral densities. Numerically, it requires only computations of peri-

odic steady-state solutions for which there are efficient methods. These are dicussed in the next

section. Since these methods are essentially based on transient analysis, they can be easily inte-

grated into a standard circuit simulator. However, for large circuits it is not computationally as

efficient as the method proposed in [21].
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S(t, ω) is the derivative of the energy spectral density which is a real function. Therefore, it is

also real. Hence,Sk(ω) = S∗−k(ω). Note that this algorithm directly gives the one-sided spectral

density. This is because the “input” vector to equation (11) are elements of the covariance

matrix, which contain the total power. If the two-sided average and harmonic spectral densities

are desired, they may be obtained as:

So(ω) = d0N(ω)

and

Sk(ω) = dkN(ω)

SinceKN(t) andA(t) are real, we have:

YN(t; ω) = Y ∗
N(t;−ω)

This implies:

dkN(ω) = d∗−kN(−ω)

This is as expected.

It is important to consider the harmonics of the power spectral density when cyclostationary

noise is input to another periodically varying system. In this case, these harmonics will mix with

the clock frequency of the subsequent block and contribute to the average spectral density,Sxo ,

at the output of the cascaded blocks, according to the following equation [21]:1

Sxo(ω) =
∑
k,j

H−j+k(ω + (−k + j)ωc)Sj(ω − kωc)H
∗T

k (ω − kωc) (16)

Clearly, the part of the harmonic spectral densities in and around the clock harmonics will alias

back to the signal band.

In order to compute the average and harmonic spectral densities, we require Fourier coeffi-

cientsdkN(ω). An efficient method to compute the Fourier coefficients is discussed in the next

section.
1To derive this we have used the definition of the two-dimensional Fourier transform given in [27], [20]. A slighty different

definition was used in [21]. So the equations appear a little different.
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IV. M ETHOD OFSOLUTION

In order to compute the instantaneous spectral density, we require the periodic steady state

covariance matrix and the cross-spectral densities. The set of equations (7) for the covariance

matrix is periodic with the clock. There are no other frequencies in this set of equations. The

shooting Newton method [28] can therefore be used very efficiently to get the periodic steady

state covariance matrix. In order to get the cross-spectral density, we need to obtain the periodic

steady-state solution of equation (11). This is a little more complicated since there are two

frequenciesω andωc. The two methods that can potentially be used in this case are the shooting

Newton method and the mixed-frequency-time technique [14], [15], [16], [17]. The shooting-

Newton technique is applicable to circuits with a periodic steady state response. In this method,

starting with an initial guess forY(0; ω), the equations have to be integrated for a complete

period ofY(t; ω). After integration for one period, the state transition matrix can be used to

get the correction toY(0; ω). Using these corrected values, the equations have to be integrated

once more for a complete period to get the power spectral density. This period also depends

on the relationship between the frequencyω, at which the spectrum is desired and the clock

frequency,ωc. Therefore, the computation of the noise spectrum using this method could mean

long transient simulations. In fact, if the two frequencies are non-commensurate, the output is

quasi-periodic [14], [15] and it is not possible to use the shooting Newton method. MFT can be

used to circumvent some of these difficulties. In this method, the transient solution computed

over a few selected clock cycles can be used to accurately construct the quasi-periodic output

signal. This method has been demonstrated to be very efficient for computation of the steady

state output signal as well as distortion in large switched capacitor filter circuits [29], [17]. We

have tried both these methods to solve for the cross-spectral density. Some of the results of these

computations have been presented by us in [30].

In the MFT technique, the signalY(t; ω) is sampled at the clock frequency to obtain a discrete

signal that is independent of the clock fundamentals. The number of samples required depends

upon the number of Fourier coefficients needed to represent the envelop. Since the envelop is

a single tone, MFT can be used to solve the set of equations (11) very efficiently. IfY(t; ω) is

June 10, 2004 DRAFT
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sampled att = 0 andt = Tc(= 1/fc), we get:

Y(0; ω) =
+∞∑

k=−∞

dk(ω) (17)

and this gives:

Y(Tc; ω) = ejωTcY(0; ω) (18)

If Φ(Y(ti; ω), ti, tf ) is the state transition function for the set of equations (11):

Y(Tc; ω) = Φ(Y(0; ω), 0, Tc) (19)

Equations (18) and (19) can be combined to obtain:

F = Y(0; ω)ejωTc − Φ(Y(0; ω), 0, Tc) = 0 (20)

Since the differential equations for the cross-spectral densities are linear, the state transition

function is a linear function of the initial stateY(0; ω). The Newton method will therefore give

the solution of equation (20) in a single step. In order to solve it, we need the Jacobian matrixJ

given by:

J =
∂F

∂Y(0; ω)
= ejωTcIN − ∂Φ

∂Y(0; ω)
(21)

HereIN denotesN×N identity matrix,N being the total number of state variables. The second

term in the above equation is the sensitivity matrix,Tφ. It can be obtained as explained in [28].

We have used the trapezoidal rule with time step control based on divided differences to perform

the transient integration. The sensitivity matrix,Tφ can then be written as:

Tφ =
M∏
i=1

(IN − 0.5hiA(ti))
−1(IN + 0.5hiA(ti − hi)) (22)

If the initial guess is assumed to be zero, the correct initial state is given by:

Y(0; ω) = (ejωTcIN −Tφ)
−1Y(Tc; ω) (23)

Both Y(Tc; ω) andTφ are obtained by integrating the set of differential equations (11) for one

clock cycle. Forω = ωc, MFT gives the same equation as the shooting Newton technique.

Once the corrected value ofY(0; ω) is obtained, the power spectral density can easily be

computed. The set of differential equations (11) have to be integrated once more for one clock

June 10, 2004 DRAFT



11

cycle using the corrected initial value ofY(0; ω). The Fourier coefficients required for the

average and harmonic spectral densities are computed as:

d0N(ω) =
1

Tc

∫ Tc

0

YN(t; ω)e−jωtdt (24)

dkN(ω) =
1

Tc

∫ Tc

0

YN(t; ω)e−jωte−jkωctdt (25)

Therefore, once the cross-spectral density at a particular frequency is obtained, computations

of the average and harmonic spectral densities involve only additional integrations over a clock

cycle.

Inspection of equation (11) reveals why this technique is very efficient for spectral density

computations. Other than the clock fundamentals,Y(t; ω) contains only the fundamental at

ω. As a result, the number of equations to be solved remains the same as the original set of

differential equations. Moreover, as seen from equations (20) to (23), we only need to integrate

the circuit equations over one clock cycle to get the corrected value ofY(0; ω). Therefore,

irrespective ofω, the MFT method requires only two integrations of the circuit equations over

a clock period to compute the instantaneous spectral density at a particular frequency. This is

especially advantageous both for frequencies much smaller than the clock frequency and for

frequencies very close to the clock frequency. In the first case, the envelop frequency isω and in

the second case it isω − ωc, both of which have an output period that is several times the clock

period. Moreover, in the second case, the equations become very stiff since the components at

ω andω − ωc are of comparable magnitude and very small time steps have to be taken to get

acceptable truncation error. Figure 1 shows the real and imaginary portion ofYN(t; ω) obtained

using the shooting Newton technique, for a switched capacitor bandpass filter withfc = 128kHz

andf = 123kHz. In this case, the smallest output period that contains an integral number of

cycles of all the frequencies is1ms. After 1ms, the initial state is corrected and the integration

is continued for one more period to obtain the spectral density. Besides the component atfc and

f , it is clearly seen to contain the envelop at5kHz.

V. A PPLICATION TO SWITCHED CAPACITOR CIRCUITS

We have used the method described in section IV to compute the noise PSD in switched

capacitor circuits. The state equations were derived directly for the simplified circuit. This gives
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Fig. 1. Real and Imaginary portions ofYN (t; ω) for fm = 123kHz andfc = 128kHz. The initial state is corrected after

1ms.

a state matrix that is constant in each clock phase and varies periodically with the clock. In

many of the switched capacitor circuits, the input to the operational amplifier has a capacitor

cutset. A typical case is shown in Figure 2. As a result, the state equations turn out to be

−

+

Fig. 2. Capacitor cutset in SC circuits

linearly dependent. This gives rise to numerical difficulties while solving for the covariance

matrix. Usually, charge transfer relationships between capacitors are used to get a complete set

of equations. These relationships can be converted to difference equations relating the various

cross-correlationsKij(t) between nodes. This can be done as follows.

Assume that there areN capacitor cutsets in the circuit. For each cutset, we can write a charge

conservation equation. LetAk represent one such cutset. It contains the set of capacitors that

are related directly by the charge conservation equation. The conservation equation is written in
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the form:

Ci{Vi(t2)− Vi(t1)} =
∑
j∈Rk

αjCj{Vj(t2)− Vj(t1)}, k = 1, 2, 3, . . . ,M andi ∈ Lk (26)

The setLk is in fact a singleton andAk = Lk ∪ Rk. Effectively there areM + 1 capacitors in

this cutset.Vi represents the voltage across theith capacitor andαi = ±1 represents the sign of

Vi(t). If there areN cutsets,N such equations can be written.

In the following equations we use〈, 〉 to denote the expectation operatorE{·}. The variance

of the voltageVi(t2), Kii(t2) = 〈Vi(t2), Vi(t2)〉 can be evaluated as:

Ki,i(t2) = Ki,i(t1)− 2
∑
j∈Rk

αj
Cj

Ci

Ki,j(t1) +
∑
j∈Rk

∑
l∈Rk

αjαl
CjCl

C2
i

[
Kj,l(t2) + Kj,l(t1)

]
+2

∑
j∈Rk

αj
Cj

Ci

[
〈Vi(t1), Vj(t2)〉 −

∑
l∈Rk

αl
Cl

Ci

〈Vj(t2), Vl(t1)〉
]

︸ ︷︷ ︸
A

(27)

Equation (27) contains terms of the formKij(t1, t2), which need to be eliminated since the

differential equations are derived forK(t). This can be done as follows. Consideri ∈ Lk and

j ∈ Rk. Kij(t2) = 〈Vi(t2), Vj(t2)〉 can be written as:

Ki,j(t2) =
∑
l∈Rk

αl
Cl

Ci

Kl ,j(t2) + 〈Vi(t1), Vj(t2)〉 −
∑
l∈Rk

αl
Cl

Ci

〈Vl(t1), Vj(t2)〉︸ ︷︷ ︸
B

(28)

Substituting forA in equation (27) byB from equation (28), we get

Ki,i(t2)−Ki,i(t1) =
∑
j∈Rk

αj
Cj

Ci

[
Ki,j(t2)−Ki,j(t1)

]
−

∑
j∈Rk

∑
l∈Rk

αjαl
CjCl

C2
i

[
Kj,l(t2)−Kj,l(t1)

]
(29)

Equation (29) is essentially a difference equation for the time evolution of the variance and can

replace the corresponding ODE.

Each capacitor cutset will give rise to a similar equation. In addition, if there is more than

one capacitor cutset, there will also be additional equations for the cross-correlation between

capacitors. In order to derive the corresponding difference equations, consider two different

cutsetsAp andAq. For i ∈ Lp andj ∈ Lq for p 6= q, we have:

〈Vi(t2), Vj(t2)〉 = 〈Vi(t1)+
∑

m∈Rp

αm
Cm

Ci

{Vm(t2)−Vm(t1)}, Vj(t1)+
∑
n∈Rq

αn
Cn

Cj

{Vn(t2)−Vn(t1)}〉

(30)

June 10, 2004 DRAFT



14

If equation (30) is expanded and terms are re-grouped, we get

Ki,j(t2) = Ki,j(t1)−
∑
n∈Rq

αn
Cn

Cj

Ki,n(t1)} −
∑

m∈Rp

αm
Cm

Ci

Kj,m(t1)

+
∑

m∈Rp

∑
n∈Rq

αmαn
CmCn

CiCj

{Km,n(t2) + Km,n(t1)}

+
∑

m∈Rp

αm
Cm

Ci

{
〈Vj(t1), Vm(t2)〉 −

∑
n∈Rq

αn
Cn

Cj

〈Vm(t2), Vn(t1)〉
}

︸ ︷︷ ︸
B

+
∑
n∈Rq

αn
Cn

Cj

{
〈Vi(t1), Vn(t2)〉 −

∑
m∈Rp

αm
Cm

Ci

〈Vm(t1), Vn(t2)〉
}

︸ ︷︷ ︸
B

(31)

Once again, terms containingKij(t1, t2) need to be eliminated. The last two expressions in

the equation containingKij(t1, t2) can be identified asB of equation (27). Hence they can be

eliminated using same the procedure as before. The equation for the cross-correlation can be

obtained as:

Ki,j(t2)−Ki,j(t1) =
∑
n∈Rq

αn
Cn

Cj

{Ki,n(t2)−Ki,n(t1)}+
∑

m∈Rp

αm
Cm

Ci

{Kj,m(t2)−Kj,m(t1)

−
∑

m∈Rp

∑
n∈Rq

αmαn
CmCn

CiCj

{Km,n(t2)−Km,n(t1)}

(32)

As is the case with the differential equations, if there areN charge transfer equations in the

switched capacitor circuit, there will be(N)(N+1)
2

equations for the time variation of the cross-

correlations. These equations basically replace the corresponding differential equations.

VI. RESULTS

We have obtained the noise spectrum in four switched capacitor circuits - a low pass and

bandpass filter, a decimator and a parasitic insensitive integrator. The first three circuits are

LPTV circuits for noise and the method proposed in this paper (described in section IV) has

been used to get the average and harmonic noise spectral densities. The open loop integrator is a

periodically switched circuit, but the output noise is non-stationary and not cyclostationary. This

is because it is basically unstable, with a pole at zero frequency. The behaviour of the integrator
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is similar to (linearized) oscillators and is described in more detail in [1]. The method adopted

to get the noise spectral density of the integrator was slightly different and is described in more

detail later.

The code was written in Python, a public domain scripting language. It was run on 1.7GHz

Intel PIV processors running Linux. Within Python, the Numeric Python was used. We have

assumed that the noise levels are independent of the signal levels. This is a good assumption for

many of the commonly used switched capacitor circuits. We have also used simple linear macro-

models for the switches and the operational amplifiers. Note that irrespective of the models used,

the differential equations for noise computations are linear time-varying equations. Therefore,

the efficiency of noise computations will not change if non-linear device models are used. The

additional computation required would be to get the DC operating point. This is required for all

algorithms proposed for noise spectral density calculations.

The first circuit was a switched capacitor low pass filter shown in Figure 3. Experimental

were published by Tothet al [3] for this circuit. Closed switches are modelled using a resistance

in parallel with a noise current source. The switch resistance is taken to be80Ω. The operational

amplifier is modelled using a voltage controlled voltage source with a finite bandwidth. It is

assumed to have a unity gain frequency of9π × 106rad/s and an ideal source follower output.

In order to compare with published data, a white noise voltage source with a PSD of -61.5dB

is connected to the non-inverting input of the opamp. The clock frequency is taken to be 4kHz.

The capacitor values were taken to be300pF , 100pF and100pF respectively. These are the

values quoted by Tothet al [3]. For this circuit, experimental data is available upto three times

−

+

φ φ

φ

φ φ

φ

Vin
Vout

C1

C2

C3

Fig. 3. Switched Capacitor low pass filter [3].

the clock frequency.

Figure 4 shows the average and the first three harmonics of the power spectral density. Also
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included is the experimental data for the average spectral density published in [3]. The simu-

lations of the average spectral density are seen to match well with experimental data. Both the

shooting Newton and MFT give virtually identical results for the average power spectral density.

The time taken by the two methods is shown in Table I. It is seen that MFT takes less than a

fourth of the time taken by the shooting Newton technique.

The contributions to the average spectral density of a cascaded block will come from the re-

gion around the clock frequency and its harmonics. It is seen from Figure 4, that in these regions,

HPSDs are comparable to the average spectral density and could contribute significantly. If we

assume that we have an identical cascaded block, the contribution of the first harmonic spectral

densities alone (j,k limited to±1 in equation (16)) turns out to be about5% atDC.
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Fig. 4. Average and Harmonic Spectral densities of the lowpass filter. (a) is the average spectral density. (b),(c) and (d) are the

first, second and third harmonic spectral densities. Circles indicate published experimental data [3].

The second circuit simulated was a bandpass filter shown in Figure 5. The output noise

spectral density for this circuit has been computed in [31] and [13]. The clock frequency is

128kHz. The switches are modelled using a noisy80Ω resistor in series with an ideal switch.

The input-referred white noise of the operational amplifier was assumed to be20nV/
√

(Hz).

The opamp was assumed to have infinite unity gain frequency. The values used are the same as

those quoted in [13]. Published data for this circuit is available between 0 and 10kHz.
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Fig. 5. Switched capacitor bandpass filter [31]

Figure 6 shows the average and harmonic spectral densities in this case. It is seen that the
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Fig. 6. Output noise spectral density of the bandpass filter. Circles indicate published data [31]. Curve (a) is the average

spectral density and curves (b), (c) and (d) are the first, second and third harmonics of the noise spectral density.

average spectral density matches well with published data. Table I shows a comparison of the

time taken using the shooting Newton and MFT techniques. As expected, the MFT technique

is far more efficient. Direct integration of the equations takes more than a day. It should be

noted that in the case of the shooting Newton technique, the time taken for computation depends

strongly on the measurement frequency. For example, in the two cases simulated, it takes twice

the amount of time to get the PSD at 0.5 kHz than at 1 kHz.
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Figure 6(a) also shows the HPSDs in the signal band. Interestingly, for this circuit there is a

sharp dip in the harmonic spectral densities at the point where the average spectral density peaks

(3kHz). Also, the level of the HPSDs is about30dB lower. It is therefore unlikely to make a

significant change in the average spectral density at the output of a cascaded block. Figure 6(b)

shows the average and harmonic spectral densities around the clock frequency. The levels here

are also seen to be about20dB lower. In fact, if an identical block is cascaded, the contribution

of the firstHPSDs turns out to be negligible ( about0.2%). In this case therefore, it is sufficient

to use the average spectral density in the noise macromodel.

Circuit Method Number of Total time time/freq

frequencies (seconds) (seconds)

LPF MFT 26 464.42 17.86

LPF S-N 28 2250.87 80.38

BPF MFT 53 1011 19.07

BPF S-N 54 45731 846.87

Dec. MFT 33 761.42 23.07

TABLE I

COMPARISON OF THE TIME TAKEN BYSHOOTING NEWTON AND MFT.

The third circuit is a switched capacitor decimator [32] shown in figure 7. Here the clock

frequency is 400KHz, but switches are controlled by clock phases that have different frequen-

cies. The circuit itself is periodic, with a fundamental frequency corresponding to the lowest

frquency. In the case shown, this is half the clock frequency. If MFT is used for the solution,

the integration has to be done for one period of the lowest frequency clock, in this case 200KHz.

The average and harmonic spectral densities for this case are shown in figure 8. The time taken

is shown in table I.

The fourth example is the stray insensitive integrator shown in figure 9. The sample and held

noise spectral density for this circuit has been computed in [4]. Here, the clock frequency is

26MHz and the amplifier DC gain and settling accuracy are 74dB and 80dB respectively. The

values of the capacitancesC1, C2 andCp are1pF , 2pF and0.6pF respectively, as mentioned

in [4].
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Fig. 8. Power spectral densities of the decimator. (a) is the average and (b), (c) and (d) are the first, second and third HPSD
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Fig. 9. Stray insensitive SC integrator [4].
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As mentioned previously, the integrator has a pole at zero and is essentially unstable. As

a result, the variance of noise at the output will keep increasing with time. This is shown in

Figure 10(b). The output noise is nonstationary and not cyclostationary. However, as discussed

in [1], the average noise spectral density can still be obtained. The computation was done as

follows. The output noise variance was computed as a function of time and the results were

stored in a table. This was then used for the transient analysis of equations (5) and (6), which

were integrated until the steady state value for the average spectral density was obtained. The

convergence behaviour is discussed in detail in [1].

Figure 10(a) shows a comparison of the computed results with the results published in [4].

The details of the OTA and switches are not given in the paper, but the noise due to the OTA

and switches has been individually plotted. For our computations, we have adjusted the input

referred noise of the OTA and the switch noise to match with this published data at 1 MHz.

It can be seen that the computed results match reasonably well with published data over the

entire frequency range. There is a slight discrepancy, which could be because in our case, the

total noise is computed and not just the sample and held noise. It is not possible to seperate the

sample and held noise and tracking noise in our method
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Fig. 10. (a) Average input referred noise spectral density of a stray insensitive SC integrator. The circles indicate published

data [4] for sample and held noise. The three curves represent noise due to the OTA (dashed line), switches (dots) and the total

noise (solid line). (b) Output noise variance as a function of time.

June 10, 2004 DRAFT



21

VII. C ONCLUSIONS

In this paper, we have proposed a new technique to compute the average and harmonic noise

spectral densites in linear periodically varying circuits. The mixed frequency-time technique

was used for the computation. Other than the method proposed in [21], this is the only method

that can be used to compute the instantaneous spectral density. The method was demonstrated

for switched capacitor circuits. The results of the average spectral density compare well with

published data. In this method, the computation of harmonic spectral densities involves only

additional integrations of the periodic steady state solution over a clock cycle. Note that, if the

“input vector” in equation (11) is changed, the same code can also be used to get the transfer

function and its harmonics. This is useful when we have a series of identical cascaded blocks

(such as biquads). In these cases, a complete noise analysis can be done for a single circuit block

and the average and harmonic noise spectral densities and the transfer funtions can be used to

get the actual noise power spectral density at the output of the cascaded blocks.
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