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Abstract—The use of quadratic gate delay models and
arrival times result in improved accuracies for parameter-
ized block based statistical static timing analysis (SSTA).
However, the computational complexity is significantly
higher. As an alternate to this, we propose a canoni-
cal model based on skew-normal random variables (SN
model). This model is derived from the quadratic canonical
models and can take into account the skewness in the
gate delay distribution as well as the nonlinearity of the
MAX operation. Based on conditional expectations, we
derive analytical expressions for the moments of the MAX
operator and the tightness probability that can be used
along with the SN canonical models. The computational
complexity for both timing and criticality analysis is
comparable to SSTA using linear models. There is a two
to three orders of magnitude improvement in the run-time
as compared to the quadratic models. Results on ISCAS
benchmarks show that the SN models have lower variance
error than the quadratic model, but the error in the third
moment is comparable to that of the semi-quadratic model.

I. INTRODUCTION

Integrated circuits today have significant process pa-
rameter variations that affect gate delays and hence
operating frequency of the chip. A timing analysis tech-
nique that takes these variations into account is statis-
tical static timing analysis (SSTA). A computationally
efficient method for SSTA is the parameterized block-
based SSTA, which involves a PERT-like traversal of
the circuit graph [1], [2]. A canonical delay model is
used to express both the gate delays and the arrival times
(ATs). In its simplest form, the probability distribution
function (PDF) of the process parameters is assumed to
be Gaussian and the gate delays and ATs are assumed
to be linear functions of these process parameters.

However, gate delays are not always well modelled
as linear functions of process parameter variations. In
addition, the MAX operation that is used to propagate
the arrival times is inherently non-linear. One way to
account for both these nonlinearities is to use quadratic
canonical models. These models match the skewness in

addition to the mean, standard deviation and correlations.
While the overall errors do reduce, it is at the cost of
significant additional computational complexity [6], [7],
[8], [9]. Other models that take into account the skewness
in the arrival times due to the MAX operator have
been proposed in [4] and [5]. In [4], the authors attempt
to reduce the error in the standard deviation of the
circuit delay (and hence the yield) by assuming that the
arrival times have a joint skew normal distribution [4].
They obtain the tightness probability and the moments
of this distribution using a procedure similar to the
one used by Clark. These are then used to obtain the
coefficients of the linear canonical model. The method
proposed in [5] is a mixed parameterized SSTA and
Monte Carlo technque, wherein limited Monte Carlo
sampling is used when the skewness in the arrival times
exceeds a threshold value. Both these models do not take
into account the non-linearities in the gate delay.

Essentially we require a canonical form that can take
both the non-linearities into account, while maintaining
the computational tractability of the linear model. This
is the motivation for skew-canonical model proposed
by us in [18]. This canonical form is a merger of the
standard linear canonical model for the delay and the
standard skew-normal representation proposed in [10].
It is a linear function of the principal components and
contains the modulus of another standard normal random
variable that is common to all gates in the circuit. Like
the quadratic model, it is possible to match the mean,
standard deviations and skewness. It is a promising
model as the run-times required for SSTA are only
marginally higher than the linear model.

However, a natural extension of the linear gate delay
model is the quadratic delay model that is obtained using
a Taylor series expansion. The simplest method to obtain
a skew-canonical model for the delay would be to derive
it from the quadratic delay model by matching moments.
Therefore, ideally we require a skew-canonical model
that has sufficient degrees of freedom to match the first
three moments and also preserve the correlations with
each principal component. While it is relatively simple
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to get a model that matches the first three moments, it
becomes difficult (if not impossible) to also preserve all
the correlations. A similar problem arises when the result
of the MAX operator is to be expressed in the canonical
form. The sensitivities are scaled or an additional inde-
pendent component is added to match the variance, both
of which effectively result in an error in the correlation
between gates. Following a similar approach, we derive
an equivalent skew-canonical model that matches the
first three moments of the quadratic delay model exactly,
while admitting an error in the correlation between
gates. We show that this error is marginal for values
of process parameter variations typically seen today.
Based on conditional expectations, we derive analytical
expressions for the moments of the MAX operator and
the tightness probability that can be used along with
the SN canonical models. This turns out to be a much
simpler method than the method used in [4]. As a result,
the computational complexity of using this model is only
marginally higher than the linear model based on Clark’s
approximations, thus allowing for efficient computation
of node criticalities. Typical run-time improvements are
around two to three orders of magnitude as compared
to quadratic delay models. This makes it more suitable
for use in timing optimizations than the quadratic delay
models.

The paper is organized as follows. Section II contains
a brief review of the quadratic canonical models. Section
III introduces skew normal representations and contains
some properties that are used for SSTA. In section
IV we derive equivalent skew-canonical models for the
quadratic and semi-quadratic delay models. In section
V, we derive analytical expressions for the tightness
probability and the moments of the MAX of two skew
normal variables. We also describe the moment matching
procedure to obtain the coefficients of the canonical
form. Section VI describes the procedure to evaluate the
node criticalities using the quadratic and the equivalent
skew canonical models. Section VII contains the results
and section VIII, the conclusions.

II. QUADRATIC CANONICAL MODELS

The quadratic canonical model models both the gate
delay and the ATs as a quadratic function of the process
paramter variations. If these variations are represented
in terms of the principal components, the arrival time at
node i can be written as [6], [7], [8], [14]

Ai = ai0 + Aξ + ξTBξ + aηiηi (1)

Here ξ is a vector containing the principal components,
A and B are matrices containing the sensitivities to

the linear and quadratic components, ηi is the random
variable representing an independent source of variation
associated with Ai and ai0 is the mean AT (delay). The
SUM operation continues to be straightforward since
each individual component can be added. The MAX op-
eration is more involved since we now need to compute
the moments of the MAX of two quadratic functions of
random variables. The actual moment matching involves
numerical integrations and convolutions (using FFT) [6]
or approximation using a Fourier series along with a
table lookup [7] or fitting of a quadratic model along with
moment matching [8]. There is a significant increase in
computational complexity and in most cases, the cross
terms are ignored to speedup computations. However,
the quadratic delay models in [7], [8] are very general
models that can handle non-Gaussian process parameter
variations.

Of these methods, computationally the most efficient
is the method proposed in [8]. It is a two step process that
involves fitting of the MAX of two random variables
to a quadratic function of their difference, followed by
reconstruction of the quadratic canonical form through
moment matching. The computational complexity of
reconstruction is O(n3), where n is the number of
principal components. If the cross terms in the quadratic
canonical form are ignored, the semi-quadratic canonical
form is obtained. This model has O(n) computational
complexity for the reconstruction.

III. SKEW NORMAL RANDOM VARIABLES

A standard skew normal random variable has a PDF
given by [10]

f(z;λ) = 2φ(z)Φ(λz) (2)

where φ(z) and Φ(z) are the PDF and the CDF of the
standard normal random variable. The parameter λ de-
termines the skewness of the distribution. The moments
can be adjusted using a location and a scale parameter.
The CDF is given by

F (z;λ) = Φ(z)− 2T (z;λ), λ > 0 (3)

where T (z;λ) is the Owen’s T-function. Standard com-
puter routines are available to compute this function. The
properties of the Owen’s T-function can be used to get
the CDF for λ < 0 (negative skewness).

There are several representations of the skew normal
random variable that have this PDF [10], [15]. The
representation that we are interested in is

Z = α+ βX (4)
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where
X =

λ√
1 + λ2

|U |+ 1√
1 + λ2

V (5)

where U and V are independent standard normal random
variables. The moments as well as several interesting
properties of the skew normal random variable can be
found in [10], [15]. The properties that are of interest to
us are

1. The sum of a skew-normal and a normal random
variable is also a skew normal random variable.

2. If X1 = a1V1 + b1|U | and X2 = a2V2 + b2|U |,
then X3 = X1 +X2 = a3V3 + (b1 + b2)|U |, where
a3 =

√
a21 + a22. V1, V2, V3 and U are independent

standard normal random variables. X3 is also a
skew-normal random variable.

3. The conditional distribution f(x|u) is a normal
distribution.

4. X4 = X1 − X2 is therefore also a skew-normal
random variable and P (X1 > X2) can be found
from the CDF of the skew-normal distribution [15],
[16].

5. The maximum skewness of the skew-normal ran-
dom variable is 0.995272.

These properties also hold true when the skew-normal
random variables have an arbitrary location and scale
factor.

IV. AN EQUIVALENT SKEW-CANONICAL MODEL

The quadratic model described in section II can be
expanded as:

xq = xo +

n∑
i=1

axiξi +

n+m∑
i=n+1

axiξi + sxηηx+

n+m∑
i=1

bxiξ
2
i +

n+m∑
i=1

n+m∑
j=i+1

cxijξiξj (6)

where

cxij =

{
2bxibxj , if ξi, ξj belong to same process parameter
0, otherwise

The variations in delay are caused by both inter- and
intra-die process variations. Typically, both these varia-
tions are small and can be decoupled [17]. In the above
equation, the principal components ξ1 · · · ξn model the
(correlated) intra-die variations. The m inter-die process
variations are modelled by the components ξn+1 to
ξn+m, which are common to all gates within a die.

The mean and variance of the PDF of the gate delay
can be written as follows.

µq = xo +

n+m∑
i=1

bxi (7)

σ2q =

n∑
i=1

a2xi + s2xη +

n+m∑
i=n+1

a2xi

+ 2

n+m∑
i=1

b2xi +

n+m∑
i=1

n+m∑
j=i+1

c2xij

= σ2intra + σ2inter + σ2quad (8)

Here σ2intra, σ2inter and σ2quad denote the contributions
of the intra-die, inter-die and quadratic variations to the
variance of the gate delay. The third central moment is
given by

κq =

n+m∑
i=1

8b3xi +

n+m∑
i=1

n+m∑
j=i+1

6c2xij (bxi + bxj )

+

n+m∑
i=1

6a2xibxi +

n+m∑
i=1

n+m∑
j=i+1

6cxijaxiaxj

+ 6

n∑
k=1

n∑
j=k+1

n∑
i=j+1

cxijcxjkcxik (9)

With this model, the covariance between gates x and
y is given by

Cq(x, y) =

n∑
i=1

axiayi +

n+m∑
i=n+1

axiayi

+ 2

n+m∑
i=1

bxibyi +

n+m∑
i=1

n+m∑
j=i+1

cxijcyij (10)

Based on the representation of the skew-normal ran-
dom variable, we propose a modification of the linear
canonical form to a skew-canonical form as follows:

xsn = dx +

n∑
i=1

axiξi + sxηηx

+

m∑
i=1

sxwiξn+i + axn+m+1
ξn+m+1 + qx|z| (11)

In this model, the sensitivities to the components cor-
responding to the linear intra-die variations (ax1

· · · axn)
as well as the independent component sxη are kept the
same as the quadratic model. The sensitivities to the
components corresponding to inter-die variations as well
as the coefficients of the two random variables ξn+m+1

and |z| are determined by matching moments of the
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quadratic and skew-canonical model. The motivation for
this form of the model will become clear later on in this
section. The mean, variance and the third central moment
for this model can be written as

µsn = dx + qx

√
2

π
(12)

σ2sn =

n∑
j=1

a2xi +s2xη +

m∑
i=1

s2xwi +a2xm+n+1
+q2x

(
1− 2

π

)
(13)

κsn = q3xF, F =

√
2

π

(
4

π
− 1

)
(14)

Since the third central moment of the skew-canonical
delay PDF depends only on qx, we can equate (9) and
(14) to obtain its value as

qx = κ
1

3
q F
− 1

3 (15)

Using equations (7) and (12), the mean in the two cases
can be matched by setting dx = µq − qx

√
2
π . As seen

from equations (8) and (13), both qx and the quadratic
terms also contribute to the variance. If the two models
are exactly equivalent, both these contributions will be
exactly the same and the two variances will automatically
match. However, this is not the case in practice and
scaling/introduction of an additional random variable is
required to match the variance. A similar situation arises
when moment matching is used to obtain the result of
the MAX operator in linear SSTA and scaling of linear
sensitivities [9] or an additional independent random
variable [2] is used to match the variance. Since the
contribution of qx to the variance turns out to be larger
than the contribution of the quadratic terms, introduction
of an additional random variable is not an option. The
sensitivities axi can be scaled to match the variance, but
this needs to be done carefully as is seen in the following
example. Consider N identical gates in cascade. For
simplicity, we assume that the intra-die variations are
entirely uncorrelated and ignore the contributions of the
quadratic terms to the variance. The path delay variance
is therefore σ2Pq = Nσ2intra + N2σ2inter. With the SN
model, assume that a fraction f of this variance is
due to qx i.e., q2x

(
1− 2

π

)
= fσ2. To get the same

gate delay variance with the SN model, we must have
σ2inter + σ2intra = (1 − f)σ2 i.e., the linear sensitivities
need to be scaled by a factor

√
1− f . With this the

variance of the gate delay matches exactly, but the path
delay variance using SN models will now be given by

σ2PSN = N(1− f)σ2intra +N2(1− f)σ2inter +N2fσ2

= (N(1− f) +N2f)σ2intra +N2fσ2inter

since the random variable z is also common to all gates
in the circuit. Therefore, one could potentially get a large
error in the variance of the circuit delay even though the
variance of the gate delay matches exactly. A solution
to this problem is to scale the sensitivities due to inter-
die variations alone. If q2x

(
1− 2

π

)
= f1σ

2
inter and the

linear inter-die sensitivities are scaled by
√

1− f1, it
can be easily verified that both the gate and path delay
variances obtained using the two models match exactly.
Therefore, in the SN canonical model the coefficients
sxwi are written as

sxwi = axn+i

√
1− q2x

σ2inter

(
1− 2

π

)
All the quadratic terms are absorbed into the additional
component ξn+m+1 and the corresponding sensitivity is
given by

axm+n+1
=

√√√√2

n+m∑
i=1

b2xi +

n+m∑
i=1

n+m∑
j=i+1

c2xij

In this model, the covariance between two gates x and
y is given by

Csn(x, y) =

n∑
i=1

axiayi + qxqy

(
1− 2

π

)

+

m∑
i=1

sxwisywi + axm+n+1
aym+n+1

(16)

Comparing equations (10) and (16), it is seen that the
first term is identical, but there is an error that depends
on the magnitude of the last three terms in equation
(16) relative to the covariance due to the linear inter-

die
(

n+m∑
i=n+1

axiayi

)
and the quadratic component of

the variation. For typical process variations seen today,
the contribution of the quadratic components to the
covariance is quite small. Noting that F−

2

3

(
1− 2

π

)
≈ 1,

the error can be approximated as

n+m∑
i=n+1

axiayi

[
1− 1

ρinter−die

(γxγy)
1

3σxσy
xwyw

−√√√√√(1− γ
2

3
x σ2x
x2w

)1−
γ

2

3
y σ2y
y2w

] (17)

where ρinter−die =

n+m∑
i=n+1

axiayi

xwyw
is the correlation coeffi-

cient between gate delays due to the inter-die variation
alone. We expect ρinter−die to be close to one. Since
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typically the skewness of the gate delay PDFs is small
[8] and this error also turns out to be quite small.
Practically the error was found to be less than 2% in
all the benchmarks. Note that this model automatically
reduces to the linear model when the PDF of the gate
delay has zero skewness.

A. Skew-canonical equivalent of semi-quadratic models

The semi-quadratic delay model is a simplification
of the quadratic delay model achieved by ignoring the
cross-components. The delay model is thus

xsq = xo +

n∑
i=1

axiξi +

n+m∑
i=n+1

axiξi +

n+m∑
i=1

bxiξ
2
i + xηηx

(18)

The equivalent model can be written as

xsn = dx +

n∑
i=1

axiξi + sxww +
√

2

2n+m∑
i=n+1

bxi−nξi

+ qx|z|+ xηηx (19)

where

sxw =

√√√√ n+m∑
i=n+1

a2xi − q2x
(

1− 2

π

)
Therefore, here we introduce additional “principal com-
ponents” with sensitivities corresponding to the diagonal
elements of B. The reason is as follows. The covariance
in the two cases are given by

Csq(x, y) =

n∑
i=1

axiayi +

n+m∑
i=n+1

axiayi + 2

n+m∑
i=1

bxibyi

(20)

Csn(x, y) =

n∑
i=1

axiayi + sxwswy

+ 2

n+m∑
i=1

bxibyi + qxqy

(
1− 2

π

)
(21)

The errors in this case are similar to that of the quadratic
case. However, it can be shown that the two covari-
ances match exactly if the sensitivities (both linear and
quadratic) are a linear function of the gate delay. The
details are included in Appendix A.

V. SUM AND MAX OPERATIONS

The two operations that are required for SSTA are
the SUM and MAX operation. If xsn and ysn are two

delay variables represented in the skew-canonical form
and Ssn = xsn + ysn, the coefficients of Ssn can be
computed as,

Ssn = ds +

n∑
i=1

asiξi + ssηηs + ssww + qs|z|

ds = dx + dy

asi = axi + ayi for i = 1, 2 · · ·n

ssη =
√
s2xη + s2yη

ssw = sxw + syw

qs = qx + qy

We wish to represent the result of the MAX operation
in the skew-canonical form. As in linear SSTA, we use a
moment matching technique. This requires the moments
of the joint PDF of two skew normal random variables.
The method in [4] uses a technique similar to the one
proposed by Clark for normal random variables. This
turns out to be complicated.

Instead, we can use the fact that the conditional dis-
tributionof the skew normal model, given z, is a normal
distribution. This makes it possible to use Clark’s formu-
las to get the conditional moments. Since z ∼ N(0, 1),
the actual moments can be found by integrating the
conditional moments along with the PDF of the standard
normal. Analytical forms of all moments can be obtained
in terms of the Owen’s T function and the CDF of the
standard normal. We illustrate this for the first moment.
If psn = MAX(xsn, ysn), the conditional expectation
given the value of z is obtained from Clark’s formula as

E{psn|Z} = µpsn|Z = µxsn|ZTxcond + µysn|Z(1− Txcond)
+ σ(xsn−ysn)|Zφ(θ) (22)

where θ =
µ(xsn−ysn)|Z
σ(xsn−ysn)|Z

and

µ(xsn−ysn)|Z = (dx − dy) + (qx − qy)|z| (23)

σ(xsn−ysn)|Z =√√√√ n∑
i=1

(axi − ayi)2 + s2xη + s2yη + (sxw − syw)2 (24)

Txcond = Φ

(
µ(xsn−ysn)|Z

σ(xsn−ysn)|Z

)
(25)

To evaluate the first moment, we need to evaluate inte-
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grals of the form
∞∫
0

φ(z) Φ(a+ bz) dz,

∞∫
0

z φ(z) Φ(a+ bz) dz

∞∫
0

φ(z) φ(a+ bz) dz (26)

The first integral can be evaluated using the analytical ex-
pression for the unconditional tightness probability given
by property (4) of the skew-normal random variables.
Therefore,

Tx =

∞∫
−∞

Txcond φ(z) dz = 2

∞∫
0

Φ(a+ bz) φ(z) dz

= Φ(τ) + 2 T (τ, b) (27)

where,

a =
dx − dy

σ(xsn−ysn)|Z
, b =

qx − qy
σ(xsn−ysn)|Z

, τ =
a√

1 + b2

and T (h, g) is the Owen’s T function [11], given by

T (h, g) =
1

2π

g∫
0

e
−h2

2
(1+x2)

1 + x2
dx

The third integral can be evaluated in terms of Φ(·).
Since dφ

dz = −zφ(z), the second integral can be obtained
by integrating by parts. Using this, the first moment can
be written as

M1 = (dx − dy)Φ(τ) + 2(dx − dy) T (τ, b)

+

√
2

π
(qx − qy)Φ(a) +

2b

t
(qx − qy)φ(τ)Φ(−bτ)

+
2σ(xsn−ysn)|Z

t
φ(τ)Φ(−bτ) + dy + 2qx

where t =
√

1 + b2. It can be easily verified that it
reduces to Clark’s formula when qx = qy = 0.

All the higher order moments can be obtained simi-
larly and using the fact that z2φ(z) and z3φ(z) can be
written in terms of φ(z) and its derivatives.

If the mean, standard deviation and the skewness of
psn are denoted by µp, σp and γp, the coefficients of the

canonical form can be found as follows

qp = γ
1

3
p σpF

− 1

3 (28)

dp = µp − qp

√
2

π
(29)

api = axi Tx + ayi (1− Tx) for i = 1, 2 · · ·n
(30)

spw = sxw Tx + syw (1− Tx) (31)

spη =
√

(sxηTx)2 + (syη(1− Tx))2 (32)

where F is defined in equation (14). The coefficients api,
spw and spη are scaled to match the standard deviation.
The scaling factor s is found as follows

σ′p =

√
σ2p − q2p

(
1− 2

π

)
(33)

S0 =

√√√√ n∑
i=1

a2pi + s2pw + s2pη (34)

s =
σ′p
S0

(35)

VI. CRITICALITY COMPUTATION

Node/edge criticality is defined as the probability that
the node/edge lies on a dominant critical path. Com-
putation of the criticality requires both the path delay
associated with the node (PD) and its complementary
path delay (CPD). The PD for a node is the MAX of
the delays of all paths passing through the node, while
the CPD is the maximum delay distribution of all the
paths that do not pass through the node. Criticality of a
node is evaluated as the tightness probability of PD over
CPD of the node.

Criticality(i) = P (PDi ≥ CPDi) (36)

For the skew canonical model, computation of node
criticality is straight forward as the tightness probability
in (36) can easily be evaluated using the Owen’s T-
function, if both PD and CPD are in the skew canonical
form. To improve the accuracy of evaluating the critical-
ity, the pruning algorithm using the K-center clustering
described in [13] is also used.

For the quadratic canonical form used in [8], a tight-
ness probability has not really been defined. However, we
can use the quadratic approximation used in performing
MAX operation in [8] to compute an equivalent for the
tightness probability. Consider two canonicals x and y
in quadratic canonical form. To get the tightness proba-
bility, we need to evaluate P (x ≥ y). Let v = (x−y) be
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represented as a quadratic function of a standard normal
random variable w as follows.

v = (x− y) ≈ c2w2 + c1w + c0 (37)

The coefficients c2, c1 and c0 can be computed using the
first three moments of v [8]. Define t1 and t2 as:

t1 = min

(
−c1 −

√
c21 − 4c2c0

2c2
,
−c1 +

√
c21 − 4c2c0

2c2

)
(38)

t2 = max

(
−c1 −

√
c21 − 4c2c0

2c2
,
−c1 +

√
c21 − 4c2c0

2c2

)
(39)

Based on this, the tightness probability can derived as

P (x ≥ y) ≈


Φ(t1) + Φ(−t2) if c2 > 0
Φ(t1)− Φ(t2) if c2 < 0

Φ
(
c0
c1

)
if c2 = 0, c1 > 0

Φ
(
−c0
c1

)
if c2 = 0, c1 < 0

VII. RESULTS

In this section we compare the errors and run-time of
the quadratic and the equivalent skew-canonical model
against Monte Carlo simulations. The standard deviation
of the intra and inter-die components of the process
parameters is assumed to be 10% of their respective
nominal values and the standard deviation of the inde-
pendent random component is assumed to be 5% of the
nominal delay for all gates. The quad-tree structure was
used to represent spatial correlation. The equivalent skew
canonical model for the quadratic canonical model is
constructed as described in section IV.

To make sure the quantities are dimensionally the
same, we report errors in the mean, standard deviation
and the cube root of the third central moment. Table I
shows the error µ, σ, κ

1

3 and the 95% yield point of
the circuit delay distribution for the quadratic, semi-
quadratic and skew canonical models. The errors are
with respect to Monte-Carlo simulations of 106 iterations
using the quadratic model for the edge delays. The error
in µ in both the quadratic, semi-quadratic and skew-
normal cases are almost the same, but the error in σ
is lower in the case of skew-normal model than in the
full quadratic or semi-quadratic model. The error in κ

1

3

for the skew-normal model is significantly higher than
for the full-quadratic model and is comparable to the
error obtained when the semi-quadratic model is used.
So there is trade-off in terms of more accurate σ and
a less accurate κ

1

3 on using the skew-normal model as
opposed to the full quadratic model. Overall, the SN

model performs better than the semi-quadratic model.
Table II compares the error in µ, σ and 95% yield
point between the skew canonical model and the linear
model. As expected, the the mean and standard deviation
is larger when the linear model is used. Interestingly,
the error in the 95% yield point is comparable in all
cases even though the use of semi-quadratic and skew-
normal results in a larger skewness error and the use
of the equivalent linear models results in a larger mean
and σ error.In some sense, there seems to be a trade-off
in the errors of various moments, resulting in a good
estimate of the yield point. This is also illustrated in
Figure 1, which contains the PDF and CDF of skew-
normal random variables that have the same mean and
variance, but different values of the third moment. If
is seen that the differences in the PDF and CDF are
marginal for considerable variations in the third moment.
Also shown is the PDF of a Gaussian that has 2% shift
in the mean and a 3% shift in the standard deviation.
Although the PDF looks different, the 95% yield point
is practically the same as that of the skew-normal random
variables.

Benchmark Skew normal model Linear canonical model
δµ δσ δY95% δµ δσ δY95%

s953 0.28 -1.13 0.81 0.32 -2.20 -0.96
s1196 0.26 0.21 1.12 0.27 -0.92 -0.74
s1238 -0.36 -1.46 0.41 -0.27 -2.84 -1.54
s1423 0.25 0.15 1.30 0.24 -0.85 -0.55
s1488 -0.27 -1.38 0.52 -0.19 -2.80 -1.46
s1494 -0.18 -2.00 0.54 -0.05 -3.99 -1.67
s5378 1.36 -2.18 1.39 1.29 -4.25 -0.88
s9234 1.36 0.01 1.84 1.37 -0.97 0.18
s13207 0.76 -0.91 1.27 0.70 -1.45 -0.47
s15850 0.52 -0.17 1.10 0.54 -1.32 -0.73
s35932 -3.08 -0.93 -2.02 -2.75 -2.55 -3.50
s38417 6.49 -2.74 4.66 6.85 -5.23 3.36
s38584 2.17 -5.02 1.78 1.55 -4.36 -0.64
Avg. error 1.33 1.41 1.44 2.18 2.59 1.63

TABLE II: Percentage error in µ, σ and 95% Yield
point of the circuit delay distribution for equivalent
skew-canonical model, equivalent linear model and lin-
ear model with respect to Monte-Carlo simulations of
106 iterations with the quadratic model for ISCAS89
benchmarks using quad-tree QT

Table III has the comparison of the overhead in CPU
times as compared to the linear model for computing
the circuit delay of the ISCAS85 and 89 benchmarks
using the three models. Clearly, the skew-normal model
is only marginally slower than the linear model and has
a significant advantage over both the quadratic models.
The average speed-up over the quadratic SSTA is about
two to three orders of magnitude. The speed-up obtained
depends on the number of principal components and will
be larger as this number increases.
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Benchmark Quadratic canonical model Semi-quadratic canonical model Skew normal model
δµ(%) δσ(%) δ(κ

1
3 )(%) δY95%(%) δµ(%) δσ(%) δ(κ

1
3 )(%) δY95%(%) δµ(%) δσ(%) δ(κ

1
3 )(%) δY95%(%)

c17 0.22 -2.37 -3.08 -0.38 0.18 -3.72 -28.84 -1.22 0.19 -1.47 9.46 0.21
c432 0.61 -1.99 -1.04 0.16 0.57 -3.01 -19.58 -0.44 0.69 -0.74 26.95 1.35
c499 -0.17 -2.39 -1.20 -0.60 -1.06 -5.71 -24.83 -2.44 0.26 -3.10 20.63 0.35
c880 0.23 -1.39 -0.69 -0.06 0.23 -1.75 -20.29 -0.49 0.29 0.03 26.08 1.14
c1355 -0.56 -2.75 -2.27 -0.97 -1.29 -5.25 -23.91 -2.47 -0.08 -2.63 23.61 0.32
c1908 0.79 -1.46 -1.43 0.31 0.77 -2.06 -19.14 -0.15 0.82 -0.56 27.23 1.42
c2670 0.20 -1.47 -1.71 -0.19 0.17 -2.05 -21.31 -0.71 0.19 0.09 23.88 0.97
c3540 -0.24 -2.36 -1.59 -0.61 -0.32 -3.54 -20.55 -1.27 -0.14 -1.17 25.99 0.61
c5315 0.47 -3.88 -4.10 -0.46 0.44 -5.11 -24.74 -1.18 0.54 -0.39 23.12 1.31
c6288 0.62 -2.50 -1.72 0.07 0.60 -3.98 -20.67 -0.60 0.38 -0.83 28.64 1.24
c7552 0.03 -1.00 -0.62 -0.17 0.02 -1.33 -18.46 -0.57 0.04 0.37 29.22 1.08
Avg. error 0.38 2.14 1.77 0.36 0.51 3.41 22.03 1.05 0.33 1.03 24.07 0.91

(a)ISCAS85 benchmarks

Benchmark Quadratic canonical model Semi-quadratic canonical model Skew normal model
δµ(%) δσ(%) δ(κ

1
3 )(%) δY95%(%) δµ(%) δσ(%) δ(κ

1
3 )(%) δY95%(%) δµ(%) δσ(%) δ(κ

1
3 )(%) δY95%(%)

s953 0.22 -2.54 -2.93 -0.35 0.17 -3.71 -23.72 -1.05 0.28 -1.13 21.19 0.81
s1196 0.24 -1.90 -1.58 -0.23 0.23 -2.50 -20.88 -0.73 0.26 0.21 25.04 1.12
s1238 -0.52 -3.55 -1.63 -1.14 -0.61 -5.29 -20.80 -1.95 -0.36 -1.46 28.28 0.41
s1423 0.23 -0.66 0.67 0.17 0.23 -0.86 -16.22 -0.16 0.25 0.15 31.34 1.30
s1488 -0.39 -3.94 -3.48 -1.10 -0.51 -5.87 -23.63 -1.99 -0.27 -1.38 25.35 0.52
s1494 -0.59 -4.67 -3.96 -1.47 -0.69 -7.16 -23.79 -2.47 -0.18 -2.00 27.80 0.54
s5378 0.83 -4.08 -5.18 -0.31 0.56 -6.12 -29.71 -1.49 1.36 -2.18 17.04 1.39
s9234 1.36 -0.85 -2.32 0.94 1.34 -1.53 -22.92 0.41 1.36 0.01 20.28 1.84
s13207 0.57 -1.37 -1.06 0.23 0.57 -1.76 -23.71 -0.28 0.76 -0.91 22.54 1.27
s15850 0.38 -1.86 -2.95 -0.19 0.36 -2.62 -25.48 -0.81 0.52 -0.17 20.67 1.10
s35932 -1.08 -3.21 -5.41 -1.56 -2.03 -5.75 -28.79 -3.26 -3.08 -0.93 13.78 -2.02
s38417 8.23 -2.49 -3.67 5.81 6.89 -7.35 -26.15 3.31 6.49 -2.74 3.84 4.66
s38584 1.82 -2.92 -3.22 0.76 1.50 -5.79 -29.17 -0.67 2.17 -5.02 26.23 1.78
Avg. error 1.27 2.62 2.93 1.10 1.21 4.33 24.23 1.43 1.33 1.41 21.80 1.44

(b)ISCAS89 benchmarks

TABLE I: Error in µ, σ, 3
√
κ and 95% Yield point of the circuit delay distribution for quadratic canonical model,

semi-quadratic canonical model and equivalent skew-canonical model-I with respect to Monte-Carlo simulations of
106 iterations with the quadratic model for ISCAS85 and ISCAS89 benchmarks using quad-tree QT

Node criticalities are evaluated using the quadratic
and skew-normal models as described in the section VI.
Figure 2 shows the maximum error in node criticalities
for the two models with respect to the Monte-Carlo
simulations. It is clear from the figures that both the
models tend to have similar errors. Figure 3 shows
the ratio of run-times between the quadratic and skew-
normal models. On an average, the run time using skew
canonical model is about two orders of magnitude lower
than using quadratic delay models.

VIII. CONCLUSION

In this paper, we have proposed a skew-canonical form
for the gate delay and arrival times to take into account
the skewness in the gate delay variation and the inherent
non-linearity of the MAX operator. We also propose a
method to obtain a skew canonical model for the gate
delay from the quadratic model. While it matches the
first three moments, there is an error in the covariance
between gates. In practice, this error was found to be of
the order of one percent.

The advantage of using the skew-canonical form is
that analytical expressions for the moments of the MAX
operation can be obtained in terms of the CDF of the
standard normal and the Owen’s T-function. Standard
computer routines are available for both these functions.
The computational complexity of evaluating these mo-
ments is marginally more than using Clark’s formulas.
As a result, SSTA using these models is two to three
orders of magnitude faster than SSTA using the quadratic
models. Another advantage is that the computational
complexity of criticality computation is comparable to
that of linear models. It gives the same accuracy as the
quadratic models at a fraction of the run-time.

However, it has the same limitations and advantages
as the canonical form. If the variations have a strong
independent component, an extended (skew) canonical
form may be essential to account for reconvergent paths
in the circuit. Some more work is also required to see
the effect of non-Gaussian process parameter variations.
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Fig. 1: The PDF and CDF of skew normal random
variables that have the same mean and variance, but
different values of the third moment. Also shown is the
PDF and CDF of a Gaussian with 2% error in the mean
and 3% error in the standard deviation.

APPENDIX A

Consider two random variables xsq and ysq repre-
sented in the semi-quadratic canonical form shown in
equation (18). Let xsn, ysn be the equivalent skew-
normal canonicals of xsq and ysq as expressed in equa-
tion (19). The difference in covariance between the two
models is given by:

Cxsqysq − Cxsnysn =

n+m∑
i=n+1

axiayi − sxwsyw

− qxqy
(

1− 2

π

)
(40)

With the assumption that the sensitivities are a linear
function of the nominal delay, the sensitivities can be
expressed as:

axi = siµx, ayi = siµy (41)

bxi = tiµx, byi = tiµy (42)

With this assumption, third cumulant of xsq and the
covariance between xsq and ysq becomes,

κx = µ3x ×
n∑
i=1

(
6tis

2
i + 8t3i

)
= k × µ3x (43)

Benchmark Quadratic Semi-quadratic Skew-normal
c17 1849.43 558.27 16.17
c432 3979.62 296.32 4.76
c499 6957.15 381.69 4.84
c880 1897.07 323.81 0.99
c1355 8051.10 354.75 12.43
c1908 5479.02 306.34 9.64
c2670 2798.14 363.86 3.12
c3540 4054.15 305.73 5.61
c5315 5509.44 389.65 4.31
c6288 6316.96 305.93 3.60
c7552 1802.14 280.81 0.96
Average 4897.77 359.27 7.57

(a) ISCAS85 benchmarks
Benchmark Quadratic Semi-quadratic Skew-normal
s953 2658.94 322.87 4.34
s1196 6019.55 351.50 2.50
s1238 6511.69 325.51 4.06
s1423 1938.97 289.17 8.02
s1488 4686.62 343.83 5.70
s1494 5109.86 340.57 4.67
s5378 4000.22 343.80 6.60
s9234 6334.19 380.50 5.90
s13207 1780.39 332.98 5.33
s15850 2306.96 298.20 4.11
s35932 13294.85 475.28 5.12
s38417 2870.79 327.76 4.05
s38584 3852.92 296.72 5.76
Average 5560.83 343.70 5.26

(b) ISCAS89 benchmarks

TABLE III: Percentage increase in run-time for the
quadratic, semi-quadratic and the skew-normal canonical
models over the linear model

Using (43), qx and sxwi are given by:

qx = µx × F ×
3
√
k = µx × k1 (44)

sxw = µx ×

√√√√ n+m∑
i=n+1

s2i − k21
(

1− 2

π

)
(45)

Using (41), (42), (44) and (45) in (40),

Cxsqysq − Cxsnysn = 0 (46)
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Fig. 3: Ratio of run-times for computing criticality using
skew canonical model and quadratic canonical models
for ISCAS85 and ISCAS89 benchmarks

(
T(quadratic)

T(skew-normal)

)
;

Average improvement in run-time is close to 120×.
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