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Abstract— One of the factors limiting the performance of
continuous-time sigma-delta modulators (CTSDM) is clock jitter.
This jitter can be classified as synchronous and accumulated/long-
term jitter. A clock that is derived from a phase-lock loop
(PLL) contains both types of jitter. In this paper, we present
a framework that can be used to obtain the output spectrum in
the presence of jitter, either synchronous or accumulated, or a
combination of both. First, a general expression for the output
power spectral density of the CTSDM in the presence of clock
jitter is derived. Based on this, analytical expressions for the
output power spectral density are obtained for particular cases
of synchronous and long-term jitter. These are validated against
behavioural simulations.

Index Terms— Clock jitter, sigma-delta modulator

I. INTRODUCTION

The continuous-time sigma-delta-modulator (CTSDM) has

received a lot of attention recently due to its potential for

obtaining high resolutions at low operating power. One prob-

lem limiting its performance is clock jitter. This jitter can be

classified as synchronous and long-term (accumulated) jitter

[1]. An analysis of jitter in phase-lock loops (PLL) indicates

that the jitter in the output is a combination of correlated

synchronous and long-term jitter [2], [1]. In the literature,

the effect of white synchronous jitter on CTSDMs has been

analyzed extensively [3], [4], [5], [6]. Recently, the effect

of synchronous correlated jitter has been studied in [7]. In

both cases, jitter is treated as a perturbation, which is possible

because the variance of jitter is bounded. There has been no

systematic study of the effects of accumulated jitter, although

there is an empirical expression given in [3]. Perturbation

models cannot be used in the case of long-term jitter since

its variance is unbounded.

In this paper, we develop a general theory for the analysis

of the effects of clock jitter in CTSDMs, using nonlinear

models for jitter. Since nonlinear jitter models are used, both

synchronous and long-term jitter can be analyzed using a

common framework. We first derive a general expression

for the output power spectral density (PSD) of the CTSDM

in the presence of clock jitter. Based on this, we obtain

analytical expressions for the output PSD for particular cases

of synchronous and long-term jitter. For the case of white

synchronous jitter, we show that the expression for the output

PSD is a slightly more accurate version of the commonly

used approximation. For correlated synchronous and long-term

jitter, we derive analytical expressions for the output PSD that

match very well with simulations using behavioural models.

Using this framework, it is also possible to obtain the output

spectrum if the clock has a combination of synchronous and

long-term jitter. As a part of this analysis, we also obtain

expressions for the effect of timing jitter on digital to analog

converters (DACs). Throughout the analysis, we assume a

non-return-to-zero DAC, which is usually the DAC used in

CTSDMs, since it has better performance than the return-to-

zero DAC in presence of clock jitter.

The paper is organized as follows. Section II describes the

model and some of the assumptions used in the analysis.

In section III, we derive expressions for the output PSD of

the DAC in the presence of clock jitter. This is followed

by an analysis of the modulator in section IV. In section V,

we derive expressions for the output PSD in the presence of

various types of jitter. Section VI contains comparisons with

behavioural simulations and a discussion of the results. Section

VII concludes the paper.

II. MODEL

Figure 1(a) shows the model that is typically used to analyze

a CTSDM with clock jitter. Clock jitter affects both the

quantizer and the feedback DAC. However, within the signal

band, since the loop gain is large, jitter in the quantizer has

a negligible effect on the output spectrum. As a result, jitter

induced errors within the signal band of the output spectrum

occur mainly due to the feedback DAC. In Figure 1(a), y
(j)
d [n]

is the output digital signal and gc(t) is the DAC output. With

no clock jitter, gc(t) = yjc(t), which is the continuous-time

version of yjd[n]. With clock jitter, gc(t) = yjc(t+ξ(t)), where

ξ(t) is a random process that models the jitter. For typical

oversampling ratios (OSRs), the modulator can be analyzed

as a discrete-time system. Therefore, sampled versions of

xc(t) (xd[n]) and gc(t) (gd[n]) are used and the loop filter

is modelled as a discrete-time filter. For purposes of analysis,

usually a linear model of the analog-to-digital converter (ADC)

is used, where the quantization error q[n], is modelled as

uniformly distributed additive white noise.

In the literature, jitter is treated as a perturbation to the ideal

and the feedback signal gd[n] can be written as

gd[n] = y
(i)
d [n] +

ξ[n]

T

(

y
(i)
d [n]− y

(i)
d [n− 1]

)

= y
(i)
d [n] + j[n] (1)

Here, y
(i)
d [n] is the output of an ideal modulator (i.e, a

modulator with no clock jitter), j[n] is the voltage error

corresponding to the timing error ξ[n] and T is the clock

period. The negative feedback loop compensates for this error

in the feedback signal at the input, resulting in a non-ideal

output spectrum. Since the jitter-induced error is modelled as
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Fig. 1. Discrete-time linearized model of the modulator with clock jitter (a)
Actual modulator and (b) A fictitious modulator with an independent process
e[n] added to the DAC output

an additive error at the input, the actual output spectrum is

the sum of the ideal spectrum and this error (multiplied by an

appropriate transfer function), i.e,

S(j)
yd

(ejωT ) = S(i)
yd

(ejωT ) + Sj(e
jωT )

|Hd(e
jωT )|2

|1 +Hd(ejωT )|2
(2)

Here, S
(j)
yd (ejωT ) is the output PSD of a modulator with jitter,

S
(i)
yd (e

jωT ) is the PSD at the output of an ideal modulator,

Sj(e
jωT ) is the PSD of the voltage error j[n] and Hd(e

jωT )
is the discrete-time transfer function of the loop filter. The

assumption here is that the error due to jitter appears as an

additive error and the error due to jitter j[n] is independent of

the output voltage.

An equivalent way to look at this model is as shown in

Figure 1(b). It is a fictitious modulator in which we add an

independent random process e[n] in an attempt to compensate

for the error in the feedback signal. This is essentially the

same error that the negative feedback loop tries to compensate,

which then appears at the output of the real modulator. If the

jitter is truly additive and the compensation is exact, then the

output PSD of the modulator will be close to the ideal output.

The loop equation for this fictitious modulator can be

written as

yd[n] + (gd ∗ hd)[n] = (x ∗ hds)[n] + q[n]− (e ∗ hd)[n] (3)

In the equation, ∗ represents the convolution operator, hd[n] is

the impulse response of the feedback path in the loop filter and

hds[n] is the impulse response of the signal path. We need to

solve for the PSD of the output, yd[n], denoted by Syd
(ejωT ).

If gd[n] is given by equation (1), the loop equation in terms

of the power spectral densities can be written as:

Syd
(ejωT ) + Sj(e

jωT )|JTF |2 = Sxd
(ejωT )|STF |2+

Sq(e
jωT )|NTF |2 + Se(e

jωT )|JTF |2 (4)

where

|STF |2 =
|Hds(e

jωT )|2

|1 +Hd(ejωT )|2

|NTF |2 =
1

|1 +Hd(ejωT )|2

|JTF |2 =
|Hd(e

jωT )|2

|1 +Hd(ejωT )|2
(5)

Here Sxd
(ejωT ), Sq(e

jωT ) and Se(e
jωT ) are the PSDs of the

input xd[n], the quantization error q[n] and the random process

e[n]. Hd(e
jωT ) and Hds(e

jωT ) are the Fourier transforms of

the two impulse responses hd[n] and hds[n]. STF , NTF and

JTF denote the signal, noise and the jitter transfer functions.

An approximate solution to the loop equation is given by

Syd
(ejωT ) ≈ S(a)

yd
(ejωT )

= Sxd
(ejωT )|STF |2 + Sq(e

jωT )|NTF |2

= S(i)
yd

(ejωT )

Se(e
jωT ) = Sj(e

jωT ) (6)

In the above equation, Sj(e
jωT ) can be obtained from equation

(1) [3], [4]. This is an approximate solution, since in general,

Sj(e
jωT ) is a function of Syd

(ejωT ). To compute Sj(e
jωT ),

S
(a)
yd (ejωT ) is used (which in this case is the ideal output

spectrum). In the real modulator, the negative feedback loop

will try to compensate for Sj(e
jωT ) at the input resulting in

an output spectral density given by:

S(j)
yd

(ejωT ) ≈ S(a)
yd

(ejωT ) + Se(e
jωT )|JTF |2 (7)

where S
(a)
yd (ejωT ) and Se(e

jωT ) are given in equation (6).

The results using an “additive jitter error” model are found

to match reasonably well with behavioural simulations and

with experiment. Therefore, in this paper, we continue to use

this model. However, we obtain more accurate expressions for

S
(a)
yd (ejωT ) and Se(e

jωT ) based on a more accurate nonlinear

jitter model. For various types of jitter, we write the loop

equation in a form similar to equation (4) and find expressions

for S
(a)
yd (ejωT ) and Se(e

jωT ). These are then used to find the

output PSD using equation (7).

The first step towards analysis of the modulator is to get an

expression for the output of the feedback DAC in the presence

of clock jitter. This is done in the next section.

III. ANALYSIS OF THE DAC

In this section, we obtain the PSD of the DAC output signal

in the presence of clock jitter. The analysis in this section is

based on work reported in [8]. The input to the DAC is a

uniformly spaced discrete-time signal, yd[n]. Its PSD can be

written as

Syd
(ejωT ) =

1

fs

∑

k

Ryd
[k]e−jkωT (8)

In the above equation, Ryd
[k] is the autocorrelation of the out-

put signal, T is the clock period and fs is the clock frequency.

In terms of the unit step function u(t), the continuous-time

signal yc(t) corresponding to yd[k] can be written as:

yc(t) =
∑

k

yd[k](u(t− kT )− u(t− (k + 1)T )) (9)
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The power spectral density of yc(t), Syc
(ω), is given by:

Syc
(ω) =

|1− e−jωT |2

(ωT )2
Syd

(ejωT ) (10)

This is the spectrum of the signal at the output of the DAC

if the clock were jitter free. However, if the clock has jitter,

the output of the DAC is the time-distorted version of yc(t),
denoted by gc(t). Let the clock jitter be denoted by ξ(t).
The autocorrelation of the jittered waveform, Rgc(t, τ), can

be written as:

Rgc(t, τ) = E {gc(t+ τ)gc(t)}

= Eξ {Ryc
(τ + ξ(t+ τ)− ξ(t))} (11)

Eξ(·) is the expectation with respect to ξ and Ryc
(t) is the

autocorrelation of yc(t) conditional to ξ. If α(t, τ) = ξ(t +
τ)− ξ(t) and f(α(t, τ), τ) is the probability density function

of α(t, τ), we have

Rgc(t, t+ τ) =

∞
∫

−∞

Ryc
(τ + α(t, τ))f(α(t, τ), τ)dα (12)

In terms of Syc
(ω), this autocorrelation can be written as:

Rgc(t, t+τ) =
1

2π

∞
∫∫

−∞

Syc
(η)f(α(t, τ), τ)ejη(τ+α(t,τ))dηdα

(13)

Now, the characteristic function M(η, τ, t) of α(t, τ) is given

by:

M(η, τ, t) = E
{

ejηα(t,τ)
}

=

∞
∫

−∞

f(α(t, τ), τ)ejηα(t,τ)dα

(14)

Substituting for this in equation (13), we get

Rgc(t, t+ τ) =
1

2π

∞
∫

−∞

Syc
(η)M(η, τ, t)ejητdη (15)

The power spectral density of gc(t), Sgc(ω, t) can obtained

as the Fourier transform of the autocorrelation function. It is

given by

Sgc(ω, t) =
1

2π

∞
∫

−∞

Syc
(η)Qc(η, ω − η, t)dη (16)

where

Qc(η, ω − η, t) =

∞
∫

−∞

M(η, τ, t)e−j(ω−η)τdτ (17)

Qc(η, ω − η, t) is the Fourier transform of the characteristic

function M(η, τ, t) evaluated at ω− η. It can be evaluated for

various types of jitter as shown in the following subsections.

A. Synchronous white jitter

This cannot be evaluated for the DAC alone, since contin-

uous time white noise does not exist. However, as will be

seen later, it is not an issue when the DAC is used within

the modulator, since we use a discrete time model for the

modulator.

B. Synchronous correlated jitter

Here we assume that ξ(t) is a correlated Gaussian process

with autocorrelation given by

Rξ(τ) = σ2e−a|τ | (18)

σ2 is the variance of ξ(t) and a is a measure of the correlation.

The expression represents a simple first order correlation. This

form for the autocorrelation is motivated by the autocorrelation

of jitter in the PLL [2]. Using this, the variance of α(t, τ), σ2
α,

can be written as:

σ2
α = 2σ2(1− e−a|τ |) (19)

Therefore, characteristic function of α(τ) is given by

M(η, τ, t) = e−
η2σ2

α
2

= e−η2σ2
∞
∑

l=0

(η2σ2)l

l!
e−la|τ | (20)

The Fourier transform of the characteristic function is thus

Qc(η, ω − η) = e−η2σ2
∞
∑

l=0

(η2σ2)l

l!

2la

(la)2 + (ω − η)2
(21)

C. Long term jitter

In this case, ξ(t) is a random walk process. The character-

istic function of α(t, τ) is given by

M(η, τ, t) = e−
η2c|τ|

2 (22)

where c is the “diffusion coefficient” of the jitter. The Fourier

transform of the characteristic function can be written as

Qc(η, ω − η) =
η2c

(η
2c
2 )2 + (ω − η)2

(23)

IV. ANALYSIS OF THE MODULATOR

Since the modulator is analyzed as a discrete-time system,

we need a sampled version of the autocorrelation of the DAC

output signal, Rgd [n, n+ k]. It can be obtained from equation

(15) as

Rgd [n, n+ k] =
1

2π

∞
∫

−∞

Syc
(η)M(η, kT, nT )ejηkT dη (24)

This can equivalently be written as

Rgd [n, n+ k] =
1

2π

∑

m

πfs
∫

−πfs

Syc
(η −mωs)

M(η −mωs, kT, nT )e
jηkT dη (25)

The corresponding PSD, Sgd(e
jωT ), is therefore

Sgd(e
jωT ) =

1

2πfs

∑

m

πfs
∫

−πfs

Syc
(η −mωs)

Qd(η −mωs, ω − η, nT )dη (26)
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where

Qd(η −mωs, ω − η, nT ) =
∑

k

M(η −mωs, kT, nT )

e−j(ω−η)kT (27)

It is the discrete Fourier transform of the sampled character-

istic function.

As explained in section II, we first analyze a modulator

that has an independent process e[n] added to the output of

the DAC. The loop equation of this modulator is given by

equation (3). In terms of PSDs, this loop equation can be

written as:

Syd
(ejωT )+Sgd(e

jωT )|Hd(e
jωT )|2+Sydgd(e

jωT )H∗
d (e

jωT )

+ Sgdyd
(ejωT )Hd(e

jωT ) = Sxd
(ejωT )|Hds(e

jωT )|2

+ Sq(e
jωT ) + Se(e

jωT )|Hd(e
jωT )|2 (28)

Sydgd(e
jωT ) is the cross-spectral density between the output

and the feedback signal. As mentioned, the aim is to put the

above equation in a form similar to equation (4). We can then

obtain expressions for S
(a)
yd (ejωT ) and Se(e

jωT ) and use them

to find the output PSD of the real modulator.

Equation (28) indicates that to find the output power spectral

density, we need to find the cross-spectral density. To do this,

we first compute the cross-correlation terms Rydgd [n, k] by

sampling the corresponding continuous-time cross-correlation

Rycgc(t, t+ τ). Now,

Rycgc(t, t+ τ) = E{yc(t+ τ)g∗c (t)}

= Eξ {Ryc
(τ + ξ(t))} (29)

Since the autocorrelation Ryc
(t) can be written as the inverse

transform of the power spectral density, we have

Rycgc(t, t+ τ) =
1

2π

∞
∫

−∞

Syc
(η)Eξ{e

jηξ(t)}ejητdη (30)

The sampled cross-correlation can therefore be written as

Rydgd [n, n+ k] =
1

2π

∑

m

πfs
∫

−πfs

Syc
(η −mωs)

Eξ{e
j(η−mωs)ξ(nT )}ejηkT dη (31)

The corresponding cross-spectral density is given by:

Sydgd(e
jωT , nT ) =

1

2πfs

∑

m

πfs
∫

−πfs

Syc
(η −mωs)

Eξ{e
j(η−mωs)ξ(nT )}

(

∑

k

e−j(ω−η)kT

)

dη (32)

Rgdyd
[n, n+k] and Sgdyd

(ejωT , nT ) can be found in a similar

manner. This analysis indicates that to find the power spectral

density of the jittered waveform, we need to first find the

Fourier transform of the sampled characteristic function of

jitter. This can then be used to obtain an expression for

Sgd(e
jωT ) using equation (26). We also need to evaluate the

cross-spectral densities for various types of jitter. This is done

in the following subsections.

A. White synchronous jitter

In this case, jitter is regarded as a perturbation with uncor-

related timing errors. Therefore, the characteristic function can

be written as:

M(η −mωs, kT, nT ) = e−(η−mωs)
2σ2

, k 6= 0

= 1, k = 0 (33)

σ2 is the variance of the clock jitter. Note that the characteristic

function is independent of n. The discrete Fourier transform

of this function at ω − η is obtained as:

Qd(η −mωs, ω − η) = (2πfs) e
−(η−mωs)

2σ2

δ(ω − η)

+ (1− e−(η−mωs)
2σ2

) (34)

Substituting this in equation (26), we get

Sgd(e
jωT ) =

∑

m

e−(ω−mωs)
2σ2

Syc
(ω −mωs) +

∑

m

1

2πfs

πfs
∫

−πfs

Syc
(η −mωs)

(

1− e−(η−mωs)
2σ2
)

dη (35)

Now, the first term in the above equation can be written as:

Syd
(ejωT )

∑

m

e−(ω−mωs)
2σ2

sinc2((ω −mωs)T/2) (36)

This expression can be used directly in the equation (28)

and the resulting loop equation can be solved to obtain an

expression for S
(a)
yd (ejωT ). The disadvantage of doing this is

that the series sum has to be evaluated for each jitter variance.

Instead, we can get a very good approximation by noting that,

for all practical values of jitter, the exponential term is close

to one and it dies down more slowly than the “sinc” function.

Therefore, to a very good approximation, its effects on aliasing

can be ignored and the term (36) can be approximated as:

e−ω2σ2

Syd
(ejωT )

∑

m

sinc2((ω −mωs)T/2) (37)

With m in the range ±20 and 1% jitter, the error due to

this approximation is only about 0.6% at fs/2 and is smaller

at lower frequencies. If there is 5% jitter, the error in this

approximation is about 6% at fs/2. We can make similar

approximations for the second term. Denoting the series sum

of “sinc squared” functions as S(ω), the second term in

equation (35) can be approximated as:

1

2πfs

πfs
∫

−πfs

S(η)Syd
(ejηT )

(

1− e−η2σ2
)

dη (38)

The resulting error in the signal-to-noise ratio (SNR) depends

on the shape and the high frequency gain of the NTF. However,

in all the cases simulated, this approximation gives an SNR to

within 0.2− 0.3dB of the simulated value, with four aliasing

sidebands (−4 ≤ m ≤ 4). With only one sideband included,

the SNR matches to within 1dB. If the range of m is increased

to a very large value, the approximation will overestimate the

amount of aliasing, but the SNR remains within 0.5dB of the
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simulated value. This is true even for 10% clock jitter where

the error in the approximation is larger.

In order to obtain the cross-correlation, we need to find

Eξ{e
jηξ(nT )} and Eξ{e

jηξ((n+k)T )}. In this case, both are

equal to e−η2σ2/2. Making similar approximations as for

Sgd(e
jωT ), the expressions for the cross-spectral densities are

given by:

Sydgd(e
jωT ) = Sgdyd

(ejωT ) ≈ e−ω2σ2/2Syd
(ejωT )S(ω)

(39)

B. Correlated synchronous jitter

In this case, jitter is regarded as a perturbation, but the

timing errors are correlated. Here, we assume an autocorre-

lation of the form given in equation (18). In this case, the

characteristic function can be written as:

M(η −mωs, kT ) = e−(η−mωs)
2σ2(1−e−a|k|T )

As in the case of white synchronous jitter, the value of

M(η, kT ) is close to one up to ωs/2 and dies down slowly

after that. Therefore, we can make similar approximations as

for the white synchronous jitter case and Sgd(e
jωT ) can be

written as:

Sgd(e
jωT ) ≈

1

2πfs

πfs
∫

−πfs

S(η)Syd
(ejηT )Qd(η, ω−η)dη (40)

where

Qd(η, ω − η) = e−η2σ2
∞
∑

l=0

(η2σ2)l

l!
[

1− e−2laT

1 + e−2laT − 2e−laT cos((ω − η)/fs)

]

(41)

The error in the approximation is larger for larger values of a
(relatively uncorrelated jitter). The upper bound for this error

is the error incurred with white synchronous jitter.

If substituted directly in the loop equation (equation (28)),

it becomes difficult to obtain even the approximate solution

S
(a)
yd (ejωT ). As mentioned previously, the aim is to write the

loop equation in the form of equation (4), i.e. in a form

suitable to the additive jitter model. To that end, we write

this integral as a discrete sum over frequency bins of width

∆fi. Obviously, as the bin size becomes smaller, the integral is

represented more accurately. The bin width needed to get good

estimates of the SNR depends on the OSR and the shape of

the NTF, but typically we have found that around hundred bins

within the signal bandwidth is sufficient. A similar number of

bins is required to get estimates of the SNR from behavioural

simulations.

The main problem in writing it as a discrete sum is that

Qd(η, η − ω) has a peak at η = ω and falls very rapidly on

both sides, especially for small values of a (large correlation

times). Since η2σ2 is typically very small in the signal

bandwidth, this maximum value can become very large. So,

numerical estimation in a finite bin size becomes difficult.

However, since the jitter power contained in a bin is limited, a

numerically more robust estimate can be obtained by finding

the approximate jitter power in each bin. On doing this, we

obtain

Sgd(e
jωT ) ≈

∑

i

S(fi)Syd
(fi)e

−(2πfiσ)
2

×

∞
∑

l=0

((2πfi)
2σ2)l

l!
P c
f (fi) (42)

where P c
f (fi) is the jitter power in each frequency bin and is

given by

P c
f (fi) =

fi+
∆fi
2

∫

fi−
∆fi
2

1− e−2laT

1 + e−2laT − 2e−laT cos(2π(f − ν)/fs)

dν

fs

(43)

It is possible to obtain an analytical expression for the above

integral [9] and it is given by

P c
f (fi) = 0, l = 0, fi 6= f

=
1

π

[

tan−1

{

1 +A

1−A
tan

(

π(f − fi + 0.5∆fi)

fs

)}

− tan−1

{

1 +A

1−A
tan

(

π(f − fi − 0.5∆fi)

fs

)}]

, elsewhere

(44)

where A = e−laT . The discrete sum can then be written as a

sum of two components, namely, the PSD at f = ω
2π , where

spectrum is desired, and the sum of the PSDs at the other

frequencies. Therefore,

Sgd(e
jωT ) ≈ S(f)Syd

(f)e−(2πfσ)2
∞
∑

l=0

((2πf)2σ2)l

l!
P c
f (f)

+
∑

fi 6=f

S(fi)Syd
(fi)e

−(2πfiσ)
2

∞
∑

l=1

((2πfi)
2σ2)l

l!
P c
f (fi)

(45)

Since Eξ{e
jηξ(nT )} and Eξ{e

jηξ((n+k)T )} are both equal to

e−η2σ2/2, the cross-spectral densities are given by equation

(39)

C. Long-term jitter

The discrete time version of the characteristic function given

by equation (22) can be written as

M(η −mωs, kT, nT ) = e
−|k|(η−mωs)2σ2

2 (46)

In the above equation, σ2 = cT . In this case, it is not possible

to make the same approximations as for the previous two

cases. The discrete Fourier transform of M(η, kT ) is given

by:

Qd(η, ω − η) =
1− e−η2σ2

1 + e−η2σ2 − 2e
−η2σ2

2 cos((ω − η)/fs)
(47)
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In this case, we can write Sgd(e
jωT ) as

Sgd(e
jωT ) =

1

2πfs

πfs
∫

−πfs

∑

m

Syc
(η −mωs)

Qd(η −mωs, ω − η)dη (48)

The function Qd(η, ω − η) has a relatively narrow peak at

η = ω and falls down quite rapidly on both sides. Since its

effect is localized, aliasing from the other frequency bands is

quite small. In all the simulations performed, we have seen that

completely neglecting aliasing gives an error of about 1−2dB
in the SNR. If one sideband is included, the error in the SNR

is of the order of 0.3− 0.5dB.

As in the case of correlated jitter, we write the integral as

a discrete sum. On doing this, we obtain

Sgd(e
jωT ) ≈ Syc

(f)P l
f (f) +

∑

fi 6=f

Syc
(f)P l

f (fi) (49)

It is convenient in this case to expand the series sum, with the

range of fi depending on the number of aliasing frequency

bands. P l
f (fi) is the jitter power (due to long-term jitter) in

the ith frequency bin, given by:

P l
f (fi) =

fi+
∆f
2

∫

fi−
∆f
2

1−A2
i

1 +A2
i − 2Ai cos(2π(f − ν)/fs)

dν

fs

=
1

π

[

tan−1

{

1 +Ai

1−Ai
tan

(

π(f − fi + 0.5∆fi)

fs

)}

− tan−1

{

1 +Ai

1−Ai
tan

(

π(f − fi − 0.5∆fi)

fs

)}]

(50)

Unlike the correlated jitter case, Ai is not a constant within the

frequency bin. To obtain an analytical approximation for the

integral, we assume Ai takes on the value at the midpoint of

the bin. Hence Ai = e−
(2πfi)

2σ2

2 . This is a good approximation

since the bin size is usually quite small. The number of bins

used is similar to that in the previous case.

For long-term jitter, the asymptotic cross-correlations are

given by

lim
n→∞

Eξ{e
jηξ(nT )} = lim

n→∞
e−η2cnT = 0 (51)

Similarly, Eξ{e
jηξ([n+k]T )} also tends to zero asymptotically.

This tells us that the correlation between the output signal and

the jittered version of the output signal tends to zero. Although

this result is a little counter-intuitive, it can be explained as

follows. The continuous time version of the feedback signal is

gc(t) = yc(t+ξ(t)). In the case of long-term jitter, the variance

of ξ(t) grows with time. When this happens, the sample paths

of the feedback signal will be widely dispersed in time. There-

fore, asymptotically, the ensemble average E{yc(t)g
∗
c (t+ τ)}

will go to zero. Consequently, the cross-spectral densities will

also tend to zero. This is a consequence of the model that we

use. As explained in section II, we neglect the effect of jitter

errors due to the quantizer, since it is diminished by the loop

gain. While this is a good approximation in the signal band,

it may not be as good an approximation at higher frequencies.

So the quantizer output (or the modulator output) will not

maintain perfect time as is assumed in the model, but will

contain some high frequency jitter power. This in turn will

lead to some correlation between the output and the feedback

signal at higher frequencies. However, as mentioned, within

the signal band, zero correlation is a very good approximation.

V. POWER SPECTRAL DENSITY OF THE OUTPUT SIGNAL OF

THE MODULATOR

Using the results of the previous section, we obtain an

equation for the output power spectral density for various types

of jitter.

A. Synchronous white jitter

Using equations (35), (37), (38) and (39) in equation (28).

we have

Syd
(ejωT ) + Sj(e

jωT )
|Hd(e

jωT )|2

D
= Sxd

(ejωT )

×
|Hds(e

jωT )|2

D
+ Sq(e

jωT )
1

D
+ Se(e

jωT )
|Hd(e

jωT )|2

D
(52)

where D is given by

D = 1 + S(ω)
[

e−ω2σ2

|Hd(e
jωT )|2

+ e−ω2σ2/2
(

Hd(e
jωT ) +H∗

d (e
jωT )

)

]

(53)

and

Sj(e
jωT ) =

1

2πfs

πfs
∫

−πfs

S(η)Syd
(ejηT )

(

1− e−η2σ2
)

dη

(54)

Therefore, the approximate solution to the loop equation is

S(a)
yd

(ejωT ) = Sxd
(ejωT )

|Hds(e
jωT )|2

D
+ Sq(e

jωT )
1

D

Se(e
jωT ) =

1

2πfs

πfs
∫

−πfs

S(η)S(a)
yd

(ejηT )
(

1− e−η2σ2
)

dη

(55)

As discussed in section II, the power spectral density at the

output of the actual modulator is given by

S(j)
yd

(ejωT ) = S(a)
yd

(ejωT ) + Se(e
jωT )

|Hd(e
jωT )|2

D
(56)

In a sigma-delta converter, the sampling frequency is typi-

cally much larger that the signal bandwidth and σ is a fraction

of the clock period. Therefore η2σ2 is close to zero, giving

1− e−η2σ2

≈ η2σ2 (57)

Also, e−ω2σ2

, S(ω) ≈ 1, which means D ≈ |1+Hd(e
jωT )|2.

In this case, S
(a)
yd (ejωT ) is the same as the ideal output
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spectrum, S
(i)
yd (e

jωT ). Further, if all aliasing from other fre-

quency bands is neglected in the expression for Se(e
jωT ) i.e.

S(η) ≈ sinc2(ηT/2), we get

Se(e
jωT ) =

1

2πfs

(

σ2

T 2

)

πfs
∫

−πfs

|1− e−jηT |2 S(i)
yd

(η)dη (58)

This is the approximation that is commonly used in jitter

calculations. It results in an error of about 1.5 − 2dB in the

predicted SNR, which has also been reported [4].

B. Synchronous correlated jitter

Using equations (45) and (39) in the loop equation and

following a procedure similar to the one used for synchronous

white jitter, we can write approximate solution to the loop

equation as:

S(a)
yd

(ejωT ) = Sxd
(ejωT )

|Hds(e
jωT )|2

D
+ Sq(e

jωT )
1

D

Se(e
jωT ) ≈

∑

fi 6=f

S(fi)S
(a)
yd

(fi)e
−(2πfiσ)

2

×

∞
∑

l=0

((2πfi)
2σ2)l

l!
P c
f (fi) (59)

where

D = 1 + S(ω)
(

e−ω2σ2

|Hd(e
jωT )|2×

∞
∑

l=0

(ω2σ2)l

l!
P c
f (f) + e−ω2σ2/2

[

Hd(e
jωT ) +H∗

d (e
jωT )

]

)

(60)

The output power spectral density of the actual modulator,

S
(j)
yd (ejωT ), can be computed using equation (56), using ap-

propriate values for S
(a)
yd (ejωT ) and Se(e

jωT ). In all the cases

simulated, the SNR obtained using these expressions with

four sidebands, are within 0.2 − 0.3dB of simulated values.

As the correlation time increases i.e. a becomes smaller,

the characteristic function is more nearly equal to one, as

is assumed in the theory. In this case, the simulated and

theoretical values of the SNR match to within 0.1dB.

As for the case of white synchronous jitter, if ω2σ2 <<

1, which is the case for typical OSRs, S
(a)
yd (ejωT ) can be

approximated well by the ideal output spectrum. A reasonable

estimate of the SNR can be obtained by using the ideal

spectrum and ignoring aliasing in the expression for Se(e
jωT ).

C. Long-term jitter

Using equation (49) and the fact that the cross-spectral

densities are zero in the loop equation, an approximate solution

to the loop equation can be written as:

S(a)
yd

(ejωT ) =
|Hds(e

jωT )|2

D
Sxd

(ejωT ) +
1

D
Sq(e

jωT )

Se(e
jωT ) ≈

∑

fi 6=f

sinc2(πfiT )S
(a)
yd

(fi)P
l
f (fi) (61)

where

D = 1 + |Hd(e
jωT )|2sinc2(πfT)P l

f (f) (62)

As mentioned, the range of fi depends on the number of

aliasing sidebands included. Once again, the output power

spectral density can be computed using equation (56).

As a consequence of the zero correlation between the output

and the feedback signal in this case, the random process e[n]
cannot compensate well for the errors due to jitter. Therefore,

unlike the synchronous jitter case, S
(a)
yd (ejωT ) cannot be

approximated well by the ideal spectrum.

VI. RESULTS AND DISCUSSIONS

The results obtained using analytical expressions were com-

pared with behavioural simulations for first, second and third

order modulators. The second order modulator had a standard

feedback architecture with STF = z−1 and NTF = (1 −
z−1)2. The third order modulator was a feedforward modulator

with a Butterworth loop filter. The out-of-band gain was 1.4.

A time step of 0.5σ was used to integrate the state equations

of the loop filter during behavioural simulations. Correlated

random numbers were obtained using the method suggested

in [10]. Results were obtained for a one-bit and two-bit

quantizer as well as for a linear model with additive uniformly

distributed quantization error. The output spectrum is the

average power spectrum obtained from five simulations. A

Hann window was used to find the discrete Fourier transform.

The programs were written in Python and run on a Linux

system. Some representative results are now discussed. All the

results are plotted as a function of the normalized frequency

(f/fs).

A. White synchronous jitter

Figure 2 shows the results obtained for white synchronous

jitter for two different signal amplitudes. The analytical model

clearly predicts the noise due to jitter very well. The SNR

matches to about 0.3dB. As expected from the theory, noise

level does not depend on the signal amplitude.
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Fig. 2. Output spectrum of a second order modulator with an OSR of 128
and 1% white clock jitter. The quantizer is a two-bit quantizer.
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B. Correlated synchronous jitter

Figure 3 shows a comparison of theoretical and simulation

results for the case of correlated synchronous jitter, with two

different jitter variances. The results are seen to match well.

The difference between the theoretical and simulated values

of the SNR is less than 0.1dB, with four aliasing sidebands.
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Fig. 3. Output spectrum of a second order modulator with an OSR of 32 and
a correlation length of 10T with 1% clock jitter (signal amplitude is 0.6V).
The quantizer is a two bit quantizer.

Figure (4) contains plots of the output spectrum for a fixed

σ2 and different correlation times. It is seen that the noise

levels due to jitter are lower for longer correlation times. A

similar trend is observed in Nyquist rate ADCs [11],[12].
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Fig. 4. Output spectrum of a second order modulator with an OSR of 32 and
10% jitter for various correlation times. The quantizer is a two bit quantizer.

In the case of synchronous jitter, the SNR obtained from

simulations and analytical results matched very well (within

0.3dB, usually better). As expected, the match is better for

longer correlation times.

C. Long-term jitter

Figure 5 shows the results obtained for a third order

modulator and an OSR of 128 with long-term clock jitter.

Once again, the results of the analytical expressions match

very well with behavioural simulations. It is seen from the

figure that with long-term jitter, there is a spread in the signal

spectrum at the output. Both this spread and the noise level

due to jitter depend significantly on the signal amplitude.
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Fig. 5. Output spectrum of a third order modulator with an OSR of 128 and
10% long term clock jitter for two different input amplitudes, 0.1 and 0.8V.
A one bit quantizer is used.
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Fig. 6. Output spectrum of a second order modulator with an OSR of 32
and 1% long term clock jitter.

If the output spectrum has a strong harmonic content, the

true spectrum differs from the spectrum obtained using the

linear model, even if there is no jitter. This deviation is

typically not very significant within the signal band. Since the

jitter analysis is also done using the linear model, one would
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expect some differences from theoretical estimates. This is

seen in Figure 6. However, as can be seen from the figure, the

match with behavioural simulations is still very good within

the signal band. This was found to be true in all the cases

simulated, down to an OSR of 16. It is seen from Figure 6 that

the theoretical results match well with behavioural simulations

if a linear quantizer model is used. The two results also match

very well if a two-bit quantizer is used.

0 0.02 0.04 0.06 0.08 0.1
Normalized frequency

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

P
ow

er
 s

pe
ct

ru
m

 (
dB

)

Long term jitter

Fig. 7. Output spectrum of a second order modulator with an OSR of 32
and 1% clock jitter. The jitter is a combination of synchronous and long-term
jitter. For reference, results for long-term jitter alone is included. A two bit
quantizer is used.

It is also possible to use this analysis when the total jitter

is a combination of various types of jitter. For example, at

the output of the PLL, the total jitter is a combination of

synchronous and long-term jitter [1], [2]. Figure 7 shows

the results obtained if a combination of long-term jitter and

correlated synchronous jitter is used. In this simulation, half

the jitter variance is due to synchronous correlated jitter.

For reference, the spectrum for long-term jitter alone is also

included. It clearly shows there is a reduction in the jitter error

(as expected). The Lorentzian spread is also reduced.

In the case of long-term jitter, the additive jitter model itself

is not as good an approximation as for the synchronous jitter

case. Even here, the match is generally very good up to about

fs/10 and always very good up to the Nyquist frequency.

VII. CONCLUSION

In this paper, we have presented a framework to analyze

clock jitter in continuous time sigma-delta modulators. The

analysis was done for synchronous as well as long-term jitter.

The results obtained using the analytical expressions were

found to match very well with behavioural simulations. Using

the same framework, we have shown that is possible to obtain

the output spectrum, when the clock jitter is a combination

of synchronous and long-term jitter. This is typically what

would be obtained at the output of the PLL. These analytical

expressions are especially useful when jitter variances are

small. In this case, the number of points required to resolve

the jitter in behavioural simulations becomes very large.

In this paper, we continue to use the discrete-time model

of the modulator. This works well for typical OSRs used.

However, a better model would be to have the sampling done

after the loop filter.
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