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Abstract—Due to the statistical nature of gate delays in current day
technologies, measures such as path criticality and node/edge criticality
are required for timing optimization. Node criticalities are usually
computed using the complementary path delay. In order to speed up
computations, it has been recently proposed that the circuit delay be used
instead. In this paper, we show that there is a monotonic relationship
between the node criticalities computed using the circuit delay and
the complementary delay. They are not equal, but they can be used
interchangeably. We discuss the sources of error in this computation and
propose methods for more accurate computations. We also introduce a
measure that is very easy to compute and is an approximate indicator of
criticality. Since it is easy to compute, it can also be used effectively for
pruning the number of edges involved in criticality computations thus
improving the speed of criticality computations. The speedup obtained
can be as large as an order of magnitude for some of larger circuits in
the ISCAS benchmarks.

Index Terms—Statistical timing, Criticality, Statistical distance

I. INTRODUCTION

With the advent of the deep sub-micron technologies, increasing
process parameter variations have changed the fundamental require-
ments of timing analysis tools. Path delays are statistical and are
better described by a probability density function (PDF). As a result,
one of several paths could potentially become critical on a particular
die thereby making it difficult to optimise a circuit for better timing
yield. Measures that are used for optimization of the circuit are path
criticality [1], [4], [13]–[15] and node/edge criticality [1]–[4], [7].
The path criticality is the probability that a path is a critical path.
Node/edge crticality is the probability that the node/edge belongs to
atleast one dominant critical path. Node/edges with large criticality
values are candidates for optimization. In this paper, we focus on the
computation of node/edge criticality.

Node/edge criticality computations are performed after a forward
and reverse traversal of the timing graph to obtain the arrival time
(AT) and required time (RT) at each node/edge. Typically, the method
used is the cutset based method [2], [5], in which the first step is
to identify all the cutsets of the timing graph. Node/edge criticality
is computed by finding the probability that the path delay (sum of
AT and RT ) associated with a particular node/edge is greater than
the statistical maximum of the path delays associated with all the
other edges of a cutset (complementary path delay). This is done for
each cutset. The algorithm for computation of criticality has linear

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2012, November 5-8, 2012, San Jose, California, USA

Copyright c©2012 ACM 978-1-4503-1573-9/12/11... $15.00

time complexity with respect to the number of edges in the timing
graph [2], [3]. However, a straightforward implementation results in
significant inaccuracies. Some pruning of nodes/edges in a cutset
and possibly a localised Monte-Carlo analysis is required before
the evaluation of the criticalities [3]. To reduce the time required
to compute the node/edge criticality as well as path criticality, the
circuit delay has been used instead of the complementary path delay
in [6], [7], [15]

In this paper, we look at the issue of computing node/edge
criticalities. We make two contributions. First, we take a relook at
the method for criticality computation proposed in [6]. We show
that if Clark’s formula is used, the node criticality computed using
the identity relationship cannot have the same value as the node
criticality computed using the conventional definition. However, there
is a monotonic relationship between the criticalities computed using
the two definitions and they can be used interchangeably. We also
discuss the sources of error in this computation and methods to
improve the accuracy of the method.

Our second contribution is to explore the use of a statistical
distance measure as an indicator of node criticality. Ideally, we
would like a measure that varies monotonically with the conventional
definition of criticality, but is easily computable. We propose a
measure that is based on the Kullback-Leibler (KL) divergence for
Gaussian PDFs. It is only approximately monotonic, but it is a good
indicator of criticality and is very easy to compute. As a result,
it can be used very effectively as a preliminary step to prune the
number of edges in each cutset, thus improving the speed of criticality
computations.

The paper is organized as follows. Section II contains background
details and definitions. Section III explores the computation of node
criticality using the circuit delay and the results of this computation.
In section IV we derive a measure that is easily computable and show
that it can be used as an approximate indicator of criticality and can
be used for pruning. It also contains the results obtained using this
measure. Section V concludes the paper.

II. BACKGROUND

This section contains the background details and defines the terms
used in criticality computations.

The Timing graph is a directed acyclic graph G(V,E) comprising
of nodes (V) and edges (E). The nodes represent the gate terminals.
They are connected using edges that have an associated delay. This
delay is a random variable with an associated PDF. The timing graph
is augmented with a virtual source and sink node. The virtual source
node is connected to all the primary inputs and all the outputs are
connected to the virtual sink node.

A Cutset Σ divides the timing graph into two disjoint sets. Each
cutset is a set of nodes/edges such that every path from the source



to the sink is associated with exactly one member of each cutset.
A forward and reverse SSTA performed on the timing graph gives

the arrival time (AT ) and the required time (RT ) at a particular
node. As the name suggests, AT (RT ) is the latest time at which a
signal transition at the input (output) reaches the current node. AT
at every node is the maximum of the arrival times at its incoming
edges. RT at every node is computed using the maximum of the
required times at the outgoing edges. The path delay ei associated
with a node/edge is given by

ei = ATi +RTi (1)

It represents the statistical maximum of the delays of all the paths
between the virtual source and sink nodes passing through the node.
The complementary path delay (ei′ ) of a node or edge within a cutset
is defined as follows

ei′ = MAX(ej , ∀ej : ej ∈ Σ, ej 6= ei)

Process parameter variations are typically correlated and the quad-
tree model is used to model this [8]. All edge delays, AT s and
RT s are represented in the canonical form [1] using the principal
components (PC) pj and are written as

ei = µi +

k∑
j=1

aijpj + ξiqi

Here, the weight aij is the sensitivity of ei with respect to PC pj and
k is the total number of PCs. The mean of the distribution is µi. qi is
uncorrelated with all the other principal components and represents
an independent process variation with sensitivity ξi.

SSTA involves a SUM and MAX operation at every step. The
SUM is a linear operation and the sum of two Gaussian random
variables is Gaussian. However, MAX is a nonlinear operator and
Clark’s formula [10] is used to approximate the result of a MAX
operation as a Gaussian random variable. If x and y are two Gaussian
random variables, the approximation z to MAX(x, y) is obtained
by matching the moments. The mean, standard deviation and the
correlation with another random variable w is given as follows

x = N (µx, σx); y = N (µy, σy); ρxy = ρ

z = N (µz, σz) = MAX(x, y)

a =
√
σ2
x + σ2

y − 2ρσxσy (2)

α =
(µx − µy

a

)
(3)

µz = µxΦ(α) + µyΦ(−α) + aφ(α) (4)

σ2
z = (µ2

x + σ2
x)Φ(α) + (µ2

y + σ2
y)Φ(−α) (5)

+ (µx + µy)aφ(α)− µ2
z

ρwz =

(
σ1ρwxΦ(α) + σ2ρwyΦ(−α)

σz

)
(6)

Φ(−α) = 1− Φ(α)

Here, φ is the normalized Gaussian PDF N (0, 1) and Φ is the
cumulative distribution function (CDF) of φ. Clark’s formula can
be adapted to use the principal components.

The local criticality or the tightness probability of a node ei with
respect to ej is defined as

Φ(αlocal(ij)) = P (ei ≥ ej) (7)

The global criticality of a node ei is defined as

Φ(αglobal(i)) = P (ei ≥ ei′) (8)

The appropriate values of the mean, standard deviation and correla-
tion coefficient are used to evaluate αij and αi according to (3). The
definition of criticality is thus based on the Gaussian approximation,
since it uses the CDF Φ(α) to determine the required probability.

III. CRITICALITY OBTAINED FROM THE CIRCUIT DELAY

To reduce the time required for criticality computations, [6] pro-
poses using the following identity.

P (A ≥ B) = P (A ≥ A&A ≥ B) = P (A ≥MAX(A,B)) (9)

where A and B are two random variables with arbitrary distributions.
If this identity is used, it is possible to use the circuit delay instead
of the complementary path delay to compute the criticality, thus
reducing the time required for the computation.

Equation (9) is valid as long as the MAX operation used is ideal.
However, the MAX operation used in SSTA is an approximation
using the Clark’s formulation. In this case equation (9) does not hold,
as explained below.

Using the same notations as in the previous section, if z =
MAX(x, y), we have

µx ≤ µz (10)

A simple argument shows that equation (10) must be true. Let us
generate two random variates X and Y with the distributions of x
and y respectively. Since Z = MAX(X,Y ), Z ≥ X and Z ≥ Y .
Therefore, E[Z] ≥ E[X] i.e., µx ≤ µz . This inequality also holds
when Clark’s formula is used, as shown in the Appendix A.

Since all the random variables are normal,

P (x ≥ y) = Φ

(
µx − µy√

σ2
x + σ2

y − 2ρxyσxσy

)
= Φ(α) (11)

With z = MAX(x, y), the probability that x ≥ z is given by

P (x ≥ z) = Φ

(
µx − µz√

σ2
x + σ2

z − 2ρxzσxσz

)
= Φ(β) (12)

From equations (10) and (12)

P (x ≥ z) ≤ Φ(0) =⇒ P (x ≥ z) ≤ 0.5 (13)

Therefore P (A ≥ B) is given by Φ(α), which has a range between 0
and 1. But the P (A ≥MAX(A,B)) or Φ(β) has a range between
0 and 0.5. This is why the second method proposed in [6] requires
a reconstruction formula.

The inequality (13) is valid at all points except when z = x
i.e., when the two have identical means and standard deviations and
the correlation is one. This anyway cannot be handled by Clark’s
formulation. In this case, however, x is clearly the dominant random
variable and its criticality can be assigned. If the correlation is
even slightly less than one, the probability will be close to 0.5. To
have continuity, it makes sense to assign the value of 0.5 when the
correlation is one.

A. Closed form expression and Monotonicity

Using the definitions of α and β in equations (11) and (12), after
some manipulations of Clark’s formula, it can be shown that

β =
αΦ(−α)− φ(α)√

[Φ(−α) + (αΦ(α) + φ(α)) (αΦ(−α)− φ(α))]
(14)



Instead of solving this equation to get Φ(α) from Φ(β), we show
that there is a one-to-one relationship between the two and they can
be used interchangeably. We prove it by showing that β is a strictly
increasing function of α.

Proof: Let t1 be the numerator and t2 be the denominator in
equation (14). For F (α) as defined in Appendix A, t1 = −F (α).
Therefore,

dt1
dα

= Φ(−α) > 0 (15)

Since Φ is the CDF of Gaussian distribution, it is strictly greater than
zero for all α <∞. Therefore, the numerator is a strictly increasing
function of α.

Substituting for Φ(α) in terms of Φ(−α) and using the definition
of t1, t22 can be written as

t22 = Φ(−α) + t1(α− t1)

The derivative of t22 with respect to α is given by

dt22
dα

= 2Φ(α)t1 (16)

Now, from (4) and Appendix A we get

µx − µz = at1 (17)

Since a > 0, from Appendix A, we get

t1 < 0

From equation (16), the denominator decreases with increasing values
of α. Therefore the ratio of the two is a strictly increasing function
of α. Thus the map is a one-to-one map.
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Fig. 1. Φ(α) vs Φ(β); The red line is obtained from the analytical formula
and the blue points are Φ(β) computed using the cutset maximum for a carry
select adder.

Fig. 1 contains a plot of Φ(β) as a function of Φ(α) obtained
using the analytical formula. It is evident that it is monotonic and its
range is [0, 0.5]. Since the map is monotonic, it is possible to use
Φ(β) instead of Φ(α) as a measure of criticality or create a lookup
table from equation (14) to get back Φ(α) from Φ(β).

B. Computation of Φ(β)

Φ(β) can be computed using the circuit delay obtained after doing
an SSTA. Ideally, the maximum of the path delays of any cutset
must be equal to the circuit delay. However, practically there is a
1 − 2% difference in the maximum across cutsets. Since Φ(α) is
defined relative to a cutset, this difference results in an error in the
Φ(α) computed using Φ(β). It can be seen from Fig. 1 that over a
wide range of Φ(α), the slope of the function is less than one which

implies small differences in Φ(β) can result in large errors in Φ(α)
computed using Φ(β).

This error is significant, unless Φ(β) is defined in each cutset with
respect to the maximum of that particular cutset. If this is done, the
speedup obtained is not as large. But there is still a reduction in
the number of MAX operations. Assuming that evaluation of the
tightness probability and the MAX operation take almost the same
time, if linear-time bookkeeping [3] is used, a total of (4n − 2)
MAX operations are required to compute global criticality using
complementary path delay. Here n is the number of nodes in a cutset.
If Φ(β) is computed using the cutset maximum, (2n − 1) MAX
operations are required. Getting back Φ(α) from Φ(β) involves a
lookup operation in a sorted array, which is a constant overhead.
Therefore, overall, there is still some savings in time possible.

C. Results

Fig. 1 shows Φ(β) obtained using the cutset maximum for a carry
select adder. It can be seen to match the analytical curve quite closely.
Similar plots are seen for the other circuits. Tables I & II show the
error in global criticality (Φ(αglobal)) obtained from Φ(β) computed
using the cutset maximum. The circuits were synthesized using the
180nm UMC libraries. The K-center pruning algorithm proposed
in [3] was used to improve the accuracy of the computations. The
following two quad-tree structures QT1 and QT2 for VT , L and W
of gates were used.

QT1: 5 layer quad-tree with 90% of the variation in VT , L and W of
the gates is assigned to the bottom most layer and 2.5% each
to the rest of the layers, so that the correlation is largely due to
the circuit topology.

QT2: Each of the five quad-tree layers get 20% of the variation in the
three parameters.

A 10% variation from the nominal value was considered for each of
the parameters for the simulations. The lookup table for obtaining
Φ(αglobal) from Φ(β) had 10000 values and was generated off-line
using the equation (14).

From the tables it is clear that we can get upto 30% reduction
in run-time on using Φ(β) (with respect to cutset max) without
significant loss in accuracy. The run-times include both pruning and
then finding global criticality for the un-pruned nodes. The low
speedup obtained in some of the circuits is due to the small number
of nodes remaining after pruning.

The accuracy of the computation is comparable to what has been
reported in [3], [15]. In some of the benchmarks (c6288,s38584 for
example), the maximum error is a little large in all three cases. This is
also seen in the results of [3], [15]. Monte Carlo sampling was used
in [3] to reduce the error. We have found that error can be reduced by
changing the order in which the MAX operations are performed. We
have implemented the Cluster Max Binary tree (CMBT) technique
proposed in [11]. Table III shows that there is a considerable
improvement on using CMBT to find the cutset maximum. The
drawback of using CMBT is its run-time of O(n2log(n)). The run
time costs of using CMBT algorithm for criticality computation using
complementary path delays is prohibitive, but it could possibly be
used to accurately find the cutset maximum.

IV. STATISTICAL DISTANCE

In this section, we arrive at an easily computable measure that can
be used as an approximate indicator of criticality. To do this we start
with the Kullback-Leibler (KL) divergence between the path delay
associated with each node and the circuit delay. Intuitively, if this
divergence is small, the PDF of the path delay associated with a node



TABLE I
ISCAS85 BENCHMARKS: [PS1] – Φ(αglobal) FOUND FROM THE COMPLEMENTARY PATH DELAY USING LINEAR TIME BOOKKEEPING TECHNIQUE;[PS2]

– Φ(αglobal) FOUND FROM Φ(β) W.R.T CIRCUIT DELAY; [PS3] – Φ(αglobal) FOUND FROM Φ(β) W.R.T CORRESPONDING CUTSET MAXES; RMS AND
MAX INDICATE THE ROOT MEAN SQUARED AND MAXIMUM ERROR IN Φ(αglobal) FOR EACH OF THE CASES; SPEEDUP IS THE RATIO OF RUN-TIMES, E.G.

FOR [PS2]. SPEEDUP= T ([PS1])
T ([PS2]) ; FOR ALL THE THREE CASES THE CUTSETS WERE PRUNED USING K-CENTER CLUSTERING [3]

Benchmark
Quad-tree QT1 Quad-tree QT2

[PS1] [PS2] [PS3] [PS1] [PS2] [PS3]
RMS max RMS max Speedup RMS max Speedup RMS max RMS max Speedup RMS max Speedup

c432 0.01 0.02 0.13 0.38 1.59 0.01 0.05 1.25 0.02 0.06 0.13 0.34 1.56 0.02 0.06 1.28
c499 0.02 0.05 0.04 0.10 1.69 0.05 0.16 1.40 0.03 0.09 0.05 0.12 1.73 0.10 0.24 1.41
c880 0.00 0.01 0.01 0.02 1.05 0.00 0.01 1.04 0.02 0.05 0.02 0.05 1.02 0.02 0.05 1.03
c1355 0.02 0.08 0.05 0.19 1.55 0.04 0.11 1.33 0.02 0.09 0.06 0.21 1.55 0.05 0.14 1.32
c1908 0.02 0.12 0.07 0.24 1.69 0.03 0.13 1.35 0.03 0.21 0.10 0.34 1.65 0.04 0.22 1.34
c2670 0.02 0.05 0.02 0.05 1.03 0.02 0.05 1.03 0.03 0.07 0.03 0.07 1.07 0.03 0.07 1.04
c3540 0.02 0.08 0.05 0.17 1.39 0.02 0.08 1.22 0.02 0.11 0.04 0.16 1.28 0.03 0.13 1.14
c5315 0.03 0.08 0.07 0.15 1.31 0.03 0.08 1.20 0.05 0.10 0.11 0.17 1.19 0.06 0.15 1.13
c6288 0.02 0.11 0.03 0.24 1.34 0.02 0.17 1.20 0.03 0.20 0.05 0.31 1.37 0.04 0.24 1.23
c7552 0.00 0.00 0.00 0.00 1.02 0.00 0.00 1.03 0.00 0.00 0.00 0.00 1.01 0.00 0.00 1.02
block-carry
adder

0.01 0.05 0.02 0.06 1.83 0.01 0.03 1.47 0.02 0.06 0.03 0.08 1.85 0.02 0.05 1.47

carry-bypass
adder

0.02 0.07 0.06 0.30 1.28 0.02 0.10 1.18 0.04 0.11 0.07 0.26 1.19 0.04 0.13 1.09

carry-select
adder

0.03 0.11 0.03 0.18 1.65 0.03 0.12 1.37 0.05 0.20 0.06 0.41 1.70 0.04 0.18 1.39

TABLE II
ISCAS89 BENCHMARKS

Benchmark
Quad-tree QT1 Quad-tree QT2

CPD Φ(βckt) Φ(βcutset) CPD Φ(βckt) Φ(βcutset)

RMS max RMS max Speedup RMS max Speedup RMS max RMS max Speedup RMS max Speedup

s953 0.01 0.02 0.01 0.02 1.02 0.01 0.02 1.02 0.02 0.05 0.02 0.05 1.07 0.02 0.05 1.04
s1196 0.03 0.08 0.08 0.21 1.53 0.03 0.08 1.27 0.04 0.10 0.14 0.35 1.52 0.03 0.08 1.26
s1238 0.03 0.11 0.08 0.17 1.44 0.03 0.11 1.23 0.04 0.16 0.09 0.20 1.47 0.05 0.14 1.24
s1423 0.02 0.05 0.02 0.05 1.01 0.02 0.05 1.02 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.01
s1488 0.03 0.09 0.03 0.07 1.41 0.03 0.05 1.21 0.02 0.05 0.02 0.03 1.28 0.02 0.04 1.16
s1494 0.01 0.02 0.01 0.02 1.03 0.01 0.02 1.03 0.03 0.04 0.03 0.04 1.02 0.03 0.04 1.02
s5378 0.02 0.07 0.08 0.18 1.17 0.02 0.05 1.14 0.04 0.13 0.13 0.33 1.15 0.03 0.11 1.10
s9234 0.01 0.02 0.02 0.04 1.14 0.01 0.03 1.13 0.04 0.07 0.06 0.14 1.17 0.04 0.07 1.12
s13207 0.02 0.07 0.02 0.12 1.23 0.01 0.04 1.15 0.04 0.14 0.03 0.10 1.23 0.02 0.06 1.16
s15850 0.02 0.04 0.02 0.06 1.02 0.01 0.04 1.01 0.02 0.04 0.02 0.06 1.01 0.02 0.03 1.01
s35932 0.00 0.04 0.01 0.15 1.34 0.00 0.03 1.22 0.00 0.04 0.01 0.15 1.32 0.00 0.03 1.24
s38417 0.02 0.06 0.12 0.18 1.09 0.02 0.07 1.06 0.02 0.06 0.14 0.20 1.05 0.03 0.09 1.04
s38584 0.07 0.18 0.09 0.24 1.01 0.08 0.23 1.00 0.10 0.26 0.13 0.36 1.00 0.12 0.38 1.00

is more nearly equal to the PDF of the circuit delay implying that
the node has a larger criticality. Similarly, a large divergence would
mean a low criticality. For Gaussian PDFs, there is an analytical
formula for the KL divergence, which makes it easily computable.
If N (µi, σi) is the PDF of the path delay associated with the ith

node/edge and the PDF of the circuit delay is N (µc, σc), the KL
divergence between node i and circuit delay is given by

DKL =
(µc − µi)2

2σ2
c

+
σ2
i − σ2

c

2σ2
c

+
1

2
log

(
σ2
c

σ2
i

)
(18)

One drawback is that the KL divergence has a very large dynamic
range, at times, over four orders of magnitude. The range also varies
significantly as the correlation structure of the parameters changes.
However, it is possible to make some simplifications and come up
with a measure that is a function of the approximate KL divergence
and has a range between zero and one.

From Appendices A and B, µc > max(µi, µi′) and σc <
max(σi, σi′), where the subscript i′ denotes the mean and the
standard deviation of the complementary path delay. Based on these
results, we can show that the ratio σi

µi
has an upper bound which is

the maximum value of σD
µD

over all gates in the circuit, where σD

TABLE III
IMPROVEMENT IN ERROR ON USING CLUSTER MAX BINARY TREE

TECHNIQUE(CMBT) [11] TO FIND THE MAXIMUM OF CUTSETS; W/O
CMBT – ARE THE ERRORS FROM [PS3] OF TABLES I AND II; CMBT –

USING THE SAME PRUNING SCHEME BUT USING CMBT TO FIND THE
MAXIMUM OF CUTSETS

Benchmark w/o CMBT CMBT
RMS max RMS max
Quad-tree QT1

c499 0.05 0.16 0.01 0.04
c6288 0.02 0.17 0.02 0.11
s38584 0.08 0.23 0.04 0.11

Quad-tree QT2
c499 0.10 0.24 0.02 0.05
c1355 0.05 0.14 0.02 0.08
c5315 0.06 0.15 0.04 0.08
c6288 0.04 0.24 0.03 0.16
s38584 0.12 0.38 0.08 0.19

and µD represent the standard deviation and the mean delay of a
gate. From the results of appendices C and D, both the SUM and
MAX operations result in a PDF that has a σ

µ
that is bounded by the

maximum σ
µ

of their arguments. Therefore, for each gate, the SUM



and MAX operator result in a σ
µ

that is bounded by max{ σj
µj
}, with

the index j running over the inputs to the gate and the delay from
each input to the output. Starting from the source node, if we look at
the bound at each level, it is clear that the ratio has an upper bound
which is the maximum value of σD

µD
over all gates in the circuit.

For current day technologies, the standard deviation of the gate
delay is a very small fraction of the delay itself. The upper bound
therefore is quite small. If we assume a 10% variation in the threshold
voltage, lengths and widths, σD

µD
≈ 0.17 (for a simplified model in

which the sensitivity to each source of variation is proportional to the
delay). In the discussions that follow, we do not require the actual
value of this ratio. However we assume that it is much smaller than
one.

From the above arguments, µc
σc

> µi
σc

>> σi
σc

. The second term
in equation (18) is therefore much smaller than the first term and
can be neglected. The third term in DKL is significant only if
σi is significantly different from σc. In this case µi will also be
significantly different from µc and the criticality will consequently
be quite low. Assuming that we do not require the exact values of
DKL for low criticality nodes, DKL can be simplified to

DKL ≈
(µc − µi)2

2σ2
c

Fig. 2 shows the approximate DKL as a function of the full
expression for DKL for two different quad-trees. QT3 has 90% of
the variation in the topmost layer of the quad-tree which implies the
parameter variations are highly correlated. QT1 and QT3 captures
the behaviour in the two extreme cases. It is clear that a deviation
occurs only at larger values of DKL, for which the criticality is
low. Independent of the quad-tree, we find that DKL < 1 if
Φ(αglobal) > 0.1.
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Fig. 2. (µc−µi)
2

2σ2
c

versus DKL for all nodes in s13207 benchmark for two
quad-trees

As σc is constant for a given circuit, it is simply a scaling factor.
The qualitative behaviour will not change if σc is replaced by µc
and the factor of 2 is ignored, so that the range of this “distance” is
[0, 1]. As (µc − µi) (from Appendix A) is always non-negative,

D =
(µc − µi)

µc
(19)

can be used in place of DKL.
At first sight, it seems as though σi and the correlation with other

nodes are ignored entirely in this measure. However, both σ and
ρ are required for computation of µc. Hence they are taken into
account implicitly. But it is not possible to get the same resolution in
criticality that can be obtained using the complementary path delay
or the circuit delay. The following section discusses this.

A. D as an indicator of criticality

Let N (µi, σi) be the path delay through node i and N (µi′ , σi′)
be the complementary path delay for node i. From equation (4) and
Appendix A,

µc − µi = aF (α)

where a =
√
σ2
i + σ2

i′ − 2ρii′σiσi′ and α =
µi−µi′

a
. The maximum

value of a occurs when ρii′ = −1, when a = σi + σi′ . From
appendices C and D and earlier arguments, σi

µi
< k, where k =

max
{
σD
µD

}
<< 1. Therefore

µc − µi
µc

≤ 2kF (α) (20)

F (α) decreases monotonically with α and therefore decreases mono-
tonically with Φ(α). Hence the distance measure D has an upper
bound which is monotonic with Φ(α).

But D itself is not monotonic with respect to Φ(α). More than one
path can have the same µ but different σ and different correlation
with circuit delay. Fig. 3 shows an example plot of Φ(αglobal) vs
D for all nodes of c499 and the carry-bypass adder with quad-tree
QT1. Φ(αglobal) was found using complementary path delay after

0 0.2 0.4 0.6 0.8 1

10−4

10−2

100

Φ(αglobal)

D

2kF (α)

c499

carry-bypass

Fig. 3. D vs Φ(αglobal) for all nodes in c499 benchmark and the carry
bypass adder for quad-tree QT1

the nodes were pruned using K-center clustering. The range of D
in c499 is [0.1, 0.02] and is about two orders of magnitude for the
carry bypass adder. The figure also shows the upper bound. It is a
conservative estimate, as expected.

Although non-monotonic, it is clear that D can be used as an
approximate indicator of criticality. One problem however is that
nodes that have similar criticalities have different values of D in
different circuits, making it difficult to map a fixed range of values of
D to a particular value of Φ(α). However, although termed “global
criticality”, node criticality as a measure is only relevant within a
cutset. If we use the same rationale for D, the ratio D

Dmin
, where

Dmin is the minimum value of D in the cutset, should be a reasonable
indicator of relative criticality within the cutset. This is shown in the
table below for a few cutsets in c499 and the carry bypass adder.
The least critical nodes are easily identifiable by their relatively large
values of D

Dmin
and can be used for pruning. The most critical node

in a cutset will have D
Dmin

≈ 1. (Resolving Φ(α) when the difference
in D

Dmin
between two nodes is less than two is not possible). But

its relative criticality within the cutset can be inferred based on the
maximum value of D

Dmin
within the cutset. However some non-

monotonicities are present as seen in
∑

7 of the carry bypass adder.
Hence D is an approximate indicator of criticality.



TABLE IV
Φ(αglobal) AND D

Dmin
OF NODES FROM CUTSETS Σi OF C499 AND

CARRY-BYPASS ADDER BENCHMARKS

Φ(α) D
Dmin

Φ(α) D
Dmin

Φ(α) D
Dmin

carry-bypass adder
Σ15 Σ33 Σ7

0.68 1.00 0.76 1.00 0.54 1.0
0.24 4.38 0.11 8.54 0.17 2.5
0.07 8.05 0.11 9.22 0.10 2.71

— 0.03 11.94 0.18 4.11
c499

Σ5 Σ6 Σ11

0.28 1.00 0.28 1.00 0.29 1.00
0.26 1.17 0.26 1.17 0.24 1.11
0.25 1.09 0.25 1.10 0.24 1.27
0.17 1.41 0.17 1.43 0.20 1.36
0.01 2.46 0.01 2.47 —

Based on these discussions, we have a two level pruning algorithm
that prunes out most of the nodes that have low criticality. The
remaining nodes can be pruned using K-center pruning, if required.

B. Pruning

Pruning using D is a two step procedure. Firstly the least critical
nodes in the circuit (nodes that have µ << µc) are pruned. This
step is independent of the correlation structure or the circuit. The
second step involves pruning of nodes that are non-dominant within
the cutset to which they belong.

Algorithm 1 describes the first level of pruning. We can get an
approximate value for Dthresh using the threshold value of local
criticality (which is an upper bound for the global criticality) used in
K-center pruning. The value recommended in [3] is 0.05. Using the
corresponding value of α and k = 0.17 (for 10% variation in VT , L
and W ), we get a pruning threshold of Dthresh = 0.53. Nodes were
pruned using different values of Dthresh with the quad-tree QT1.
This quad-tree was chosen since the correlations in the circuit will
be mostly due to circuit topology rather than the technology. The
ISCAS85 benchmark contains circuits that capture a wide variety of
circuit topologies. Therefore a pruning strategy derived using QT1
and the ISCAS85 benchmark circuits should be applicable when used
with other quad-trees and circuits.

The resulting error in Φ(αglobal) averaged over all circuits in the
ISCAS85 benchmarks is plotted in Fig.4. The figure shows that a
much smaller value of Dthresh = 0.15 is sufficient. It will be seen
from the results that this threshold can be used independent of the
quad-tree and the circuit. The same threshold for example, could be
used for the tree QT2 and circuits in ISCAS89 benchmarks.

Algorithm 1 Pruning using D
1: for cutset Σi in {Σ1,Σ2...Σn} do
2: for node j in Σi do
3: if Dj > Dthresh then
4: mark node j as pruned
5: end if
6: end for
7: end for

Algorithm 2 describes the second level of pruning within a cutset.
In this case, the difference in the normalised distance between two
nodes of a cutset is compared. Following a similar procedure as the
first level of pruning, Fig. 5 shows the maximum error in Φ(αglobal)
averaged over all ISCAS85 benchmarks. In this case, the threshold
∆Dthresh was empirically found to be 14.
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Fig. 4. Dthresh vs max error in Φ(αglobal) averaged over all ISCAS85
benchmarks for quad-tree QT1

Algorithm 2 Pruning using ∆D
Dmin

1: for cutset Σi in {Σ1,Σ2...Σn} do
2: for node j in Σi & j do
3: for node k in Σi, k 6= j do
4: if

(
Dj−Dk

Dmini

)
> ∆Dthresh then

5: mark node j as pruned
6: else if

(
Dk−Dj

Dmini

)
> ∆Dthresh then

7: mark node k as pruned
8: end if
9: end for

10: end for
11: end for
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Fig. 5. ∆Dthresh vs max error in Φ(αglobal) averaged over all ISCAS85
benchmarks for quad-tree QT1

Even after pruning using Algorithms 1 and 2, there could be some
low criticality nodes that need to be pruned. These nodes are then
removed using K-center clustering. The number of nodes left for the
clustering step is usually much less than the original number of nodes
in most circuits, resulting in a significant speedup for many circuits.

C. Results

Tables V and VI show the error in Φ(αglobal) and the possible
speedup for the following cases:

1. Cutsets are pruned using K-center clustering and Φ(αglobal) is
computed using complementary path delay.

2. Cutsets are pruned using Algorithms 1 and 2. This is followed
by K-center clustering and pruning on the remaining nodes.
Φ(αglobal) is computed using the complementary path delay.

3. Cutsets are pruned using Algorithms 1 and 2. This is followed
by K-center clustering and pruning on the remaining nodes.
Φ(αglobal) is computed from Φ(βcutset).



TABLE V
ISCAS85 BENCHMARKS: [PS1] – Φ(αglobal) FOUND USING COMPLEMENTARY PATH DELAY AFTER PRUNING CUTSETS USING K-CENTER CLUSTERING;
[PS2] – Φ(αglobal) FOUND USING COMPLEMENTARY PATH DELAY AFTER PRUNING THE CUTSETS USING D WITH ALGORITHM 1 AND 2 FOLLOWED BY
K-CENTER CLUSTERING OF THE REMAINING NODES; [PS3] – PRUNING SCHEME SAME AS [PS2] BUT Φ(αglobal) FOUND FROM Φ(βcutset) ; RMS AND
MAX INDICATE THE ROOT MEAN SQUARED AND MAXIMUM ERROR IN Φ(αglobal) FOR EACH OF THE CASES; SPEEDUP IS THE RATIO OF RUN-TIMES FOR

EACH CASES, I.E. FOR PS2 SPEEDUP= T ([PS1])
T ([PS2]) ;

Benchmark
Quad-tree QT1 Quad-tree QT2

[PS1] [PS2] [PS3] [PS1] [PS2] [PS3]
RMS max RMS max Speedup RMS max Speedup RMS max RMS max Speedup RMS max Speedup

c432 0.01 0.02 0.02 0.07 1.99 0.02 0.07 3.29 0.02 0.06 0.03 0.15 1.95 0.03 0.15 3.01
c499 0.02 0.05 0.01 0.05 1.10 0.02 0.10 1.58 0.03 0.09 0.02 0.05 1.15 0.02 0.05 1.69
c880 0.00 0.01 0.02 0.08 10.87 0.02 0.08 12.66 0.02 0.05 0.02 0.05 25.59 0.02 0.05 27.26
c1355 0.02 0.08 0.02 0.08 1.10 0.02 0.09 1.49 0.02 0.09 0.02 0.10 1.04 0.02 0.07 1.53
c1908 0.02 0.12 0.02 0.12 1.34 0.03 0.12 1.91 0.03 0.21 0.04 0.23 1.32 0.04 0.20 1.97
c2670 0.02 0.05 0.02 0.05 11.96 0.02 0.05 15.01 0.03 0.07 0.03 0.07 8.88 0.03 0.07 7.41
c3540 0.02 0.08 0.02 0.08 1.73 0.02 0.08 2.46 0.02 0.11 0.02 0.11 2.00 0.03 0.13 2.78
c5315 0.03 0.08 0.03 0.08 2.56 0.03 0.13 3.75 0.05 0.10 0.05 0.10 4.13 0.07 0.21 5.91
c6288 0.02 0.11 0.02 0.14 1.07 0.02 0.15 1.37 0.03 0.20 0.03 0.19 1.07 0.04 0.31 1.35
c7552 0.00 0.00 0.00 0.00 88.77 0.00 0.00 119.44 0.00 0.00 0.00 0.00 88.30 0.00 0.00 127.38
block-carry
adder

0.01 0.05 0.01 0.05 1.08 0.01 0.03 1.12 0.02 0.06 0.02 0.07 1.09 0.02 0.06 1.61

carry-bypass
adder

0.02 0.07 0.02 0.07 2.62 0.02 0.14 3.97 0.04 0.11 0.04 0.11 3.55 0.04 0.12 4.72

carry-select
adder

0.03 0.11 0.03 0.11 1.31 0.03 0.17 2.02 0.05 0.20 0.05 0.20 1.28 0.05 0.24 1.98

TABLE VI
ISCAS89 BENCHMARKS

Benchmark
Quad-tree QT1 Quad-tree QT2

[PS1] [PS2] [PS3] [PS1] [PS2] [PS3]
RMS max RMS max Speedup RMS max Speedup RMS max RMS max Speedup RMS max Speedup

s953 0.01 0.02 0.04 0.11 12.18 0.04 0.11 13.00 0.02 0.05 0.04 0.12 12.77 0.04 0.12 12.30
s1196 0.03 0.08 0.03 0.09 1.64 0.03 0.11 2.51 0.04 0.10 0.04 0.10 1.65 0.04 0.14 2.53
s1238 0.03 0.11 0.03 0.13 1.81 0.03 0.10 2.59 0.04 0.16 0.04 0.17 1.73 0.04 0.14 2.57
s1423 0.02 0.05 0.02 0.05 62.73 0.02 0.05 74.87 0.00 0.00 0.00 0.00 69.81 0.00 0.00 85.68
s1488 0.03 0.09 0.03 0.08 2.20 0.02 0.04 3.25 0.02 0.05 0.03 0.16 2.50 0.03 0.16 3.76
s1494 0.01 0.02 0.04 0.07 22.91 0.04 0.07 23.65 0.03 0.04 0.03 0.04 48.73 0.03 0.04 45.69
s5378 0.02 0.07 0.04 0.09 6.16 0.04 0.09 9.02 0.04 0.13 0.04 0.13 8.71 0.04 0.13 9.50
s9234 0.01 0.02 0.01 0.02 4.37 0.01 0.03 7.05 0.04 0.07 0.04 0.07 4.43 0.04 0.07 7.13
s13207 0.02 0.07 0.02 0.07 3.14 0.01 0.04 4.91 0.04 0.14 0.04 0.14 2.92 0.02 0.06 4.50
s15850 0.02 0.04 0.03 0.07 28.35 0.03 0.07 95.94 0.02 0.04 0.02 0.04 28.62 0.02 0.03 42.88
s35932 0.00 0.04 0.02 0.06 14.07 0.03 0.06 21.46 0.00 0.04 0.00 0.02 1.66 0.00 0.03 2.26
s38417 0.02 0.06 0.02 0.06 6.73 0.02 0.05 10.05 0.02 0.06 0.02 0.06 8.19 0.02 0.06 11.86
s38584 0.07 0.18 0.07 0.18 19.12 0.04 0.11 22.58 0.10 0.26 0.10 0.26 32.20 0.08 0.19 39.37

The error is with respect to Φ(αglobal) computed using Monte
Carlo analysis. In order to check that the threshold for pruning
is applicable to other circuits, we have also used the algorithm
for ISCAS89 benchmarks. It is seen that the error obtained using
K-center pruning and our algorithms are comparable for both the
benchmark circuits and for both quad-trees. Once again, if CMBT is
used to find the maximum of each cutset, the error in case 3. can be
reduced.

It is seen that a considerable speedup, sometimes about two
orders of magnitude, can be obtained when Φ(α) is computed from
Φ(βcutset). The lowest speedup is about 35%, which occurs when
most cutsets have a large number of nodes that are near critical.

V. CONCLUSION

In this paper, we have looked at two measures for criticality that
can be used instead of the conventional measure obtained using
the complementary path delay. There is a clear one-to-one map
between the first measure and the conventional measure. So the two
can be used interchangeably with approximately a 30% speedup in
computation time. The second is more empirical and could require
some characterization. But it is very easy to compute. Dominant high

criticality nodes and majority of the low criticality nodes can easily
be identified. Therefore it can be used quite effectively for pruning
and considerable speedup can be obtained especially for some of the
larger benchmark circuits.

Typically statistical distance measures use only the mean and the
standard deviation. There will always be some ambiguity since the
correlation is not used. Ideally therefore, the measure that we seek
should use the correlation and should be easy to compute. However
as the number of sources of variation increase, the time required for
computing the correlation itself becomes significant even if sparse
arrays are used. Of course, most of the computations are easily
parallelizable and it should be possible to get a good speedup by
running it on multiple cores.

APPENDIX A

For z = MAX(x, y), we show that µz > max(µx, µy). Without
loss of generality, assume that µx > µy , which means α is positive.
Using (4),

µz − µx = a(−αΦ(−α) + φ(α)) = aF (α) (21)



It can be easily shown that

dF

dα
= −Φ(−α) < 0

Therefore F (α) is a monotonically decreasing function of α. Since
α is positive, the upper bound for F (α) is φ(0) > 0. From (4), as
α → ∞, µz → µx, which means that the lower bound for F (α)
is zero. Since a > 0, this implies µz − µx > 0. Therefore, µz >
max(µx, µy).

APPENDIX B

Clark’s formulation satisfies both shifting and scaling properties
of MAX operation. So without loss of generality assuming µy = 0
and µx ≥ µy ,

α =
µx
a

µz = µxΦ(α) + aφ(α)

σ2
z = (µ2

x + σ2
x)Φ(α) + σ2

yΦ(−α) + µxaφ(α)− µ2
z

σ2
z = σ2

xΦ(α) + σ2
yΦ(−α) + µx(µxΦ(α) + aφ(α))− µ2

z

= σ2
xΦ(α) + σ2

yΦ(−α) + µz(µx − µz)

If σx ≥ σy ,

σ2
z − σ2

x = (σ2
y − σ2

x)Φ(−α) + µz(µx − µz) ≤ 0

as µx ≤ µz (from Appendix A) & σy ≤ σx

Similarly if σy ≥ σx,

σ2
z − σ2

y = (σ2
x − σ2

y)Φ(α) + µz(µx − µz) ≤ 0

Hence σz is always less than the maximum of the two σ’s.

APPENDIX C

If w = x+ y = N (µw, σw), σw
µw
≤ max

(
σx
µx
,
σy
µy

)
.

Proof: µw and σw are given by

µw = µx + µy

σw =
√
σ2
x + σ2

y + 2ρxyσxσy

The maximum value of σw = (σx + σy). If σx
µx
≥ σy

µy
,

=⇒ σxµy ≥ σyµx
σxµy + σxµx ≥ σyµx + σxµx

=⇒ σx
µx
≥ σx + σy
µx + µy

The same argument is valid if σy
µy
≥ σx

µx
. Which implies,

σw
µw
≤ σx + σy
µx + µy

≤ max
(
σx
µx
,
σy
µy

)

APPENDIX D

If z = MAX(x, y) = N (µz, σz), σz
µz
≤ max

(
σx
µx
,
σy
µy

)
.

Proof: Let z = MAX(x, y) = N (µz, σz). From Appendices
A and B, µz ≥ µx, µz ≥ µy and σz ≤ max(σx, σy). Let µx > µy ,
which results in three possible scenarios:
1.) σx ≥ σy and σx

µx
≥ σy

µy
:

=⇒ σx
µx
≥ σx
µz
≥ σz
µz

2.) σx ≥ σy and σx
µx
≤ σy

µy
:

=⇒ σy
µy
≥ σx
µx
≥ σx
µz
≥ σz
µz

3.) σx ≤ σy =⇒ σx
µx
≤ σy

µy
:

=⇒ σy
µy
≥ σy
µz
≥ σz
µz

From the three scenarios it is clear that,

σz
µz
≤ max

(
σx
µx
,
σy
µy

)
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