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Abstract

For a task mapped to the reconfigurable fabric (RF) of
a hybrid processor-RF architecture, large speedup can be
obtained if multiple processing units (PUs) are used to ac-
celerate the task. The overhead for configuring the PUs
can be minimized by using partial run-time reconfiguration
(PRTR). We present here the results obtained from the quan-
titative analysis for a single data-parallel task mapped to
the RF of a bus-based hybrid processor architecture.

1. Introduction

Reconfigurable hybrid processor architectures, which
constitute of a general purpose processor (GPP) coupled
to a reconfigurable fabric (RF), allow flexible implemen-
tation of any application. Computationally intensive tasks
can be mapped to the RF ; whenever a task is encoun-
tered during the run-time of an application, the RF can be
configured to execute the required task. Typically applica-
tions that are mapped to reconfigurable hybrid processors
include signal/image processing, multimedia and computer
vision. These applications consitute of data-parallel tasks
whose input data can be partitioned and processed indepen-
dently by multiple, functionally equivalent processing units
(PUs) configured in the RF. Although larger speedups de-
mand more number of PUs to be used, the reconfiguration
overhead can become prohibitive.

Use of partial run-time reconfiguration (PRTR) allows
us to configure the PUs sequentially one after the other, in-
stead of using a single bitstream for configuring the entire
RF area for the required number of PUs. Since PUs used for
data-parallel tasks operate independently, each PU can start
functioning as soon as the RF area allocated to it is con-
figured. By overlapping reconfiguration of a PU with load
transfer and computation on other PUs, the reconfiguration
overhead can be minimized.

In a bus-based hybrid processor architecture [], all PUs
use a shared data bus for accessing main memory. Recon-
figuration delay and limited data bandwidth are the two ar-

chitectural constraints present in such a system. In order to
achieve minimum processing time under these constraints,
a systematic technique is required for scheduling and allo-
cating load to the PUs. We have developed a framework for
this analysis based on divisible load theory (DLT) [3] in our
earlier work [4]. The specific case considered in that work
was a situation where the results of the computation could
be retained within the local memory of the RF itself. The
analysis in [4] is not applicable if the RF needs to be recon-
figured to perform another task, in which case the computed
results will have to be sent back to main memory. We have
addressed this problem here. The problem of scheduling
with consideration of result collection has received rigor-
ous treatment in [2], for processors in an arbitrary tree net-
work. The bus network considered in this paper is a specific
case of an arbitrary tree network. We therefore use the re-
sults in [2] as the foundation for performing the required
analysis. PRTR introduces an additional dimension to the
problem and gives some interesting results.

2. Analysis and Results

The notation that we use for our computation and com-
munication model is given in Table 1, based on DLT. Using
the notation given in Table 1, the time taken to transfer load
fraction αi to PU pi is αizTcm, while the time taken by pi

for processing it is αiwTcp. If the result data size is the
same as input data size, the time taken to transfer the result
from pi back to memory is also αizTcm.

Reconfiguration of the PUs is assumed to occur contin-
uously using a separate configuration bus, from p1 to pn,
where n is the number of PUs used. To obtain the minimum
processing time, it is possible to derive the following opti-
mality criteria: (1) Each PU should never be idle between its
load transfer and result transfer phases, (2) The data bus and
any PU should never simultaneously be idle and (3) Result
transfer sequence = Load transfer sequence. These criteria
also give us the requirement that the result transfer phase
should not have any gaps on the data bus.

Performing a quantitative analysis on our system while
enforcing the above criteria gives us the following results.



Table 1. Notation used in the analysis of our
system, based on DLT. n is the number of PUs
used.

Symbol Description
αi Fraction of total load assigned to PU pi .
w Ratio of computation time of a PU for a given

load, to the computation time of a standard
PU for the same load.

z Ratio of time taken to transmit a given
load on the bus, to the time taken to transmit
the same load on a standard bus.

Tcp Time taken to process entire load by
the standard PU.

Tcm Time taken to transmit entire load
on a standard bus.

Tp Total processing time, including result collection.
Tr Time taken to configure / reconfigure a single PU.
σ wTcp/(zTcm)
β (σ + 2)/(σ + 1)

When reconfiguration time Tr ≤ zTcm/n, load fractions
allocated to PUs are equal, and no gaps occur during load
transfer. The total processing time is then Tp = Tr+zTcm+
(zTcm + wTcp)/n. When Tr > zTcm/n, there are gaps in
load transfer, as shown in Fig. 1(a). Then the load fractions
and optimum processing time are given by
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If wTcp is small, some PUs might finish computation even
before the end of the load transfer phase. In such cases,
an optimal schedule does not exist and we have devel-
oped heuristic strategies with the basic idea being that result
transfer can occur in the gaps during load transfer.

Fig. 1(c) shows variation of φ = Tp/(zTcm) with the
number of PUs, for different values of ρ = Tr/(zTcm).
The parameter β is based on the computation speed of a 1-
D DWT hardware unit. The figure shows that an optimum
number of PUs exists for a given ρ, beyond which more PUs
do not contribute to speedup.

3. Conclusions

We have presented a theoretical framework for schedul-
ing load for a data-parallel task mapped to the RF of a hy-
brid processor. The theory gives the maximum speedup that
can be obtained, and is also a good approximation when the
application load is not arbitrarily divisible.
Acknowledgements: Thanks for financial support.
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(a) Timing diagram, Tr > zTcm/n
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Figure 1. Timing diagram for n PUs and plot
of φ vs n.
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