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ABSTRACT
Balanced truncation of descriptor systems requires compu-
tation of spectral projectors and solution of the generalized
projected Lyapunov equations, both of which have signifi-
cant complexity. Frequency-weighted balancing methods are
more efficient if the response over a specific frequency range
is desired. However, a direct extension of these methods to
descriptor systems requires the spectral projectors. In this
paper, we propose an efficient frequency-weighted balanced
truncation algorithm without finding the spectral projectors.
Samples of the frequency-domain solution to the system are
used to get an accurate estimate of the improper Gramians.
The proper Gramians are computed after adjusting for the
contribution of the improper subsystem. Low rank factors
of these Gramians are used to obtain a basis that includes
the contribution of both the proper and improper subsys-
tems. Congruence transform is used to ensure passivity of
RLC interconnect models. Results for standard benchmarks
show that the method is accurate and efficient.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Performance

Keywords
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1. INTRODUCTION
Balanced truncation is an attractive method for obtain-

ing reduced order models (ROMs), due to the existence of
a global error bound and the guaranteed stability of the re-
sulting ROM. Since the reduced order models are stable, it
is also possible to use passivity enforcement techniques to
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make sure that the resulting ROMs are also passive. How-
ever, it requires the solution of the Lyapunov equations to
obtain the Gramians, which is an O(n3) computation. The
added complexity in the case of descriptor systems is that
the solution of projected generalized continuous and discrete
Lyapunov equations is required. This in turn requires the
spectral projectors that project the pencil onto the left and
right deflating subspaces corresponding to the finite and in-
finite eigenvalues. One technique to find the projectors is
the canonical projector technique proposed by Marz [4] or
the modified Marz method proposed in [15,16]. A more effi-
cient technique to evaluate these projectors based on sparse
LUQ decomposition has been proposed in [10–12]. It has
complexity O(n2)−O(n3) depending on the sparsity of the
matrices. In some cases, explicit analytical expressions are
available for the projectors [7–9, 13, 14]. Even so, its com-
putation is fairly involved and requires the inverse of po-
tentially large and dense matrices. Alternately, the general-
ized Schur-Hammarling method can be used to compute the
Gramians [6], which also has O(n3) complexity.

An alternative technique to compute the Gramian is to
numerically evaluate the corresponding integral in the fre-
quency domain [1–3,17]. This leads to the frequency-weighted
balancing methods, which are used when a good match to
the transfer function is required over a specified frequency
range. This method is computationally much more efficient
when the system matrices are sparse, which is typically the
case. It is also easily parallelizable. A drawback is that the
resulting ROM is not guaranteed to be stable, although it
is usually stable if the integral is approximated well. How-
ever, if the system matrices are definite matrices, which is
the case for VLSI interconnects, a congruence transform can
be used to get passive ROMs [1, 2]. In [1],low rank factors
of the controllability Gramian is used for reduction of sym-
metric systems and the cross-Gramian for general systems.
In [2, 3], both Gramians are computed and the correspond-
ing Cholesky factors are used for the reduction. However, in
both these works, although the authors indicate the method
can be used for descriptor systems, the contribution of the
improper subsystem is not explicitly taken into account. In
the case of singular descriptor systems, for large enough fre-
quencies, the solutions to the equations could tend to a con-
stant or increase with frequency, so that the integral does
not exist. A direct extension of methods in [1–3] to include
these systems would once again require computation of the
spectral projectors [6].

However, if we actually look at the role of these spectral
projectors in estimating the Gramian, they essentially zero



out the contribution of the improper (proper) subsystem to
the Gramian corresponding to the proper (improper) sub-
system. In this paper, we show that it is possible to obtain
the Gramians in a computationally efficient manner, without
explicitly computing the spectral projectors if we look at the
problem in the frequency domain. We first obtain an accu-
rate estimate of the contribution of the improper subsystem.
The proper Gramians are computed after adjusting for the
contribution of the improper subsystem. Low rank factors of
these Gramians are used to obtain a basis that includes the
contribution of both the proper and improper subsystems.
Congruence transform is used to ensure passivity of RLC in-
terconnect models. We demonstrate that the method gives
accurate results for various benchmarks [18,19].

2. BACKGROUND
Defining the system under study more precisely, let the

differential equations describing the system be written as

E
dx

dt
= Ax +Bu

y = Cx +Du (1)

E and A are n × n system matrices, x is the vector of un-
knowns and u and y represent the inputs to and outputs
of the system. B is an n × m matrix corresponding to m
inputs and C is an q×n matrix corresponding to q outputs.
We assume that λE − A is a regular pencil and the sys-
tem is asymptotically stable, i.e., all the finite eigenvalues
lie in the open left half plane. In an asymptotically sta-
ble system, the matrix A must be nonsingular, but E could
be either singular or non-singular. Balanced truncation of
systems with non-singular E (state variable form) is a well
studied problem. In this paper, we focus on systems for
which E is singular i.e., descriptor systems. For these sys-
tems, the Gramians corresponding to both the proper (slow)
and improper (fast) subsystems are required. Neglecting the
improper subsystem could lead to erroneous results [5].

If the pencil is regular, it is possible to make a transfor-
mation to the Weierstrass canonical form i.e., there exist
nonsingular matrices Q and T such that [6]

E = Q

[
If 0
0 N

]
T and A = Q

[
J 0
0 I∞

]
T (2)

where If and I∞ are identity matrices with sizes equal to
the dimension of the deflating subspaces associated with the
finite and infinite eigenvalues. The finite eigenvalues of the
pencil are the eigenvalues of the block J and N is a nilpotent
matrix. The index of nilpotency of N , denoted by ν, is the
index of the system. The equations corresponding to the
finite eigenvalues represent the proper part of the system
and those corresponding to the infinite eigenvalues represent
the improper subsystem. In the discussion that follows, the
coordinate system corresponding to the canonical form is
referred to as the canonical coordinate system.

If E is singular, the Gramians corresponding to the proper
and improper subsystem are the solutions to the following
continuous and discrete projected GLYAPs respectively [6].

EPpcA
T +APpcE

T + SlBB
TSTl = 0, Ppc = SrPpc

ETPpoA+ATPpoE + STr C
TCSr = 0, Ppo = PpoSl (3)

APicA
T − EPicET = (I − Sl)BBT (I − Sl)T , SrPic = 0

ATPioA− ETPioE = (I − Sr)TCTC(I − Sr), PioSl = 0
(4)

where Sl and Sr are the spectral projectors onto the left and
right deflating subspaces of the pencil corresponding to the
finite eigenvalues, given by

Sl = Q

[
If 0
0 0

]
Q−1 and Sr = T−1

[
If 0
0 0

]
T (5)

The critical steps in computing the reduced order bases are
the computation of the spectral projectors and solution of
the projected GLYAPs, both of which have O(n3) complex-
ity.

In the next two sections, we show that it is possible to
perform this computation efficiently without explicitly com-
puting the spectral projectors if we look at the problem in
the frequency domain.

3. PROPOSED FREQUENCY WEIGHTED
BALANCING METHOD: THEORY

If we look at the role of the spectral projectors Sl and Sr,
they essentially project the system so that only the equations
corresponding to the finite eigenvalues (proper part) of the
system are retained. The improper part is essentially zeroed
out. This means that in the time domain, the solutions Ppc
and Ppo to the projected GLYAPs can be written as [7]

Ppc =

∞∫
0

F(t)BBTFT (t)dt (6)

Ppo =

∞∫
0

F(t)TCTCF(t)dt (7)

where

F(t) = T−1

[
etJ 0
0 0

]
Q−1 (8)

Similarly, the projection operators used to obtain the im-
proper Gramians are I − Sl and I − Sr, which means the
equations corresponding to the proper part are nulled out.
Consequently, the solutions to the projected discrete-time
GLYAPs are given by [7]

Pic =

ν−1∑
k=0

FkBB
TFTk (9)

Pio =

ν−1∑
k=0

FTk C
TCFk (10)

where

Fk = T−1

[
0 0
0 −Nk

]
Q−1 (11)

The corresponding frequency domain representation of the

Gramians can be obtained as follows. Let Q−1 =

[
QTI1
QTI2

]
and

T−1 =
[
TI1 TI2

]
, where the matrices are partitioned con-

sistently with (2). Define K1 = QTI1B, K2 = QTI2B. Substi-

tuting for F(t) and using Parseval’s theorem, the Gramian



Ppc can be obtained from equation (6) as

Ppc =
1

2π
TI1

 ∞∫
−∞

(jωI − J)−1K1K
T
1 (jωI − J)−Hdω

TTI1
(12)

However, we do not know the matrices Q, T and J , so that
this integral cannot be evaluated directly.

To overcome this problem, we look at the system equa-
tions (1) in the canonical coordinate system, which can be
written as

dφ1

dt
= Jφ1 +K1u

φ2 = −K2u(t)−
ν−1∑
i=1

N iK2u
(i)(t) (13)

where x = T−1φ, with φ =

[
φ1

φ2

]
. Therefore x = TI1φ1 +

TI2φ2. Consequently, if Z(jω) denotes the transform of the
impulse response matrix, it can be written as

Z(jω) = (jωE −A)−1B

= TI1(jωI − J)−1K1 − TI2
ν−1∑
i=0

(jω)iN iK2 (14)

The proper and improper part of the solutions are clearly
decoupled in this frequency domain solution. Let M0 =
−TI2K2 and M1 = −TI2NK2, covering systems of index one
and two. The matrices Mi are constant matrices. Also, let
Zm(jω) denote the contribution of the improper subsystem.
From equation (14), Zm(jω) can be written in terms of the
matrices Mi as

Zm(jω) = −TI2
ν−1∑
i=0

(jω)iN iK2 = M0 + jωM1 · · · (15)

Hence,

Y (jω) = Z(jω)− Zm(jω) = TI1(jωI − J)−1K1 (16)

which is the strictly proper part of the solution.
Pic and Ppc can be constructed using Zm(jω) and Y (jω)

as follows. From equation (12), it can be seen that the
Gramian corresponding to the proper subsystem is given
by

Ppc =
1

2π

∞∫
−∞

Y (jω)Y (jω)Hdω (17)

Ppo can be obtained similarly. From equations (9),(11) and
(14), we get

Pic = TI2

(
ν−1∑
i=0

N iK2(N iK2)T
)
TTI2

=

ν−1∑
i=0

MiM
T
i (18)

Pio can be obtained similarly.
Therefore, instead of computing the spectral projectors,

we need to evaluate the constant matrices Mi. The key to
obtaining the ROMs efficiently is the efficient computation
of these matrices.

4. COMPUTATION OF THE MATRICES OF
THE IMPROPER SUBSYSTEM

In this section, we propose an efficient algorithm to obtain
accurate estimates of the matrices Mi. In the discussion
that follows, we assume that the index of the system is at
most two (covering RLC networks, PEEC models and fluid
mechanical systems present in the two sets of benchmarks
[18,19]).
Y (jω) denotes the strictly proper part of the solution

and hence eventually decays with frequency. Therefore, at
large enough frequencies, the improper part of the solu-
tion dominates and Z(jω) ≈ Zm(jω) = M0 + jωM1. At

these frequencies, therefore, M0 ≈ Zr and M1 ≈ dZI
dω

where
Zr = Re(Z(jω)) and ZI = Im(Z(jω)). The question is
what is a large enough frequency. To determine this we
set up an iteration. The steps are outlined in Algorithm
1. We start the iteration at a frequency ωmax and define
ωmin = ωγmax, γ < 1. Samples of Z(jω) are obtained by
varying ω uniformly on a log scale between ωmin and ωmax.
We then estimate the first derivative of Zr (dzr) and the
second derivative of ZI (d2zI) with respect to ω at each of
these frequencies using finite differences. At frequency ωi,
the two derivatives can be written as

dzr[i] =
Zr[i]− Zr[i− 1]

ωi − ωi−1
, d2zI [i] =

2(dzI [i+ 1]− dzI [i])
ωi+1 − ωi−1

where dzI is defined similarly as dzr. Note that both dzr[i]
and d2zI [i] are n×m or n×q matrices depending on whether
we are computing matrices for the controllability or observ-
ability Gramian. If the solution is dominated by the im-
proper part, then both these derivatives should be approx-
imately zero. To check this, we evaluate {maxj,k{|dzrjk |}}
and {maxj,k{|d2zIjk |}} at each frequency ωi. If both mea-

sures are less than a threshold (typically 10−15) for all ωi
between ωmin and ωmax, then M0 and M1 are estimated as

M0 ≈ 1

r + 1

r∑
i=0

Zr[i], M1 ≈ 1

r

r∑
i=1

ZI [i]− ZI [i− 1]

ωi − ωi−1

i.e. the average value of the real part of Z(jωi) and the first
derivative of the imaginary part of Z(jωi) respectively over
the samples obtained at r+1 frequency points between ωmin
and ωmax. If the threshold condition is not satisfied, ωmax
is increased and the derivatives are once again estimated.
For all the benchmarks, we have found that if we start at a
high enough frequency, typically between 1012 − 1016rad/s
for most benchmarks, the matrices can be obtained in one
or two iterations. Moreover, in many cases, the additional
samples computed are not wasted, since they are used to
estimate the proper Gramians.

Once these matrices are evaluated, Zm(jω) is obtained as
M0+jωM1 and Y (jω) = Z(jω)−Zm(jω). It is possible now
compute both Gramians - the improper Gramian as a simple
outer product and the proper Gramian using a quadrature.
For the quadrature, we require samples between

[
0 ωmaxq

]
.

If ωmaxq is larger than ωmin, the samples obtained for es-
timation of the constant matrices are reused. For many of
the benchmarks, especially the MNA benchmarks, therefore,
there is no real overhead for computation of the improper
Gramians, other than the cost of estimating the derivatives.
We have tried both trapezoidal and Simpson’s rule for the
quadrature. Both these methods were found to give reason-
able results.



Algorithm 1 Algorithm to compute M0 and M1 for index
1 and 2 systems

1: Input: ωmax, γ, β,
[
E A B C D

]
, Threshold

2: ωmin = ωγmax; Z = [ ]; flag = 0;
3: While flag == 0
4: For ωi between ωmin and ωmax:
5: Z[i]← (jωiE −A)−1B

Zr = Re{Z[i]}; ZI = Im{Z[i]}
dzr[i] = Zr [i]−Zr [i−1]

ωi−ωi−1

d2zI [i] = 2
ωi+1−ωi−1

(dzI [i+ 1]− dzI [i])
Ndzr[i] = maxj,k{|dzr[i]jk|}
Nd2zI [i] = maxj,k{|d2zI [i]jk|}

6: If (maxi{Ndzr[i]} or maxi{Nd2zI [i]}) > Threshold:
ωmin = ωmax; ωmax = β ωmax //β > 1//

7: Else
flag = 1

8: M0 = 1
r+1

∑r
i=0 Zr[i] ; Average over the r + 1 samples

between ωmin and ωmax

9: M1 = 1
r

∑r
i=1

ZI [i]−ZI [i−1]
ωi−ωi−1

;

10: Zm(jωi) = M0 + jωiM1;

Computationally, this is much more efficient than finding
the spectral projectors and using them to solve the Lya-
punov equations. For p frequency points, the evaluation of
the integral for the Gramian corresponding to the proper
subsystem requires p complex matrix factorizations and p
solves, corresponding to a computational complexity ofO(pnα+
pnβ), 1 ≤ α ≤ 1.2, 1.1 ≤ β ≤ 1.5 [1]. For large sparse sys-
tems, this complexity is significantly lower than solution of
the Lyapunov equations [1, 3]. An additional advantage is
that this computation is very easily parallellizable and is, in
fact, embarrassingly parallel.

5. COMPUTATION OF THE TBR
Once the matrices Mi and the samples of Y (jω) required

for the quadrature are obtained, the Gramians correspond-
ing to the proper and improper subsystems can be evaluated
using an outer product and quadrature. But this is expen-
sive and we do not actually require the Gramians them-
selves. What is required are Cholesky factors of the Grami-
ans Lp, Rp, Li and Ri where Pic = RiR

T
i ; Pio = LTi Li and

Ppc = RpR
T
p ; Ppo = LTp Lp. These factors can be obtained

without the building the Gramian. The steps for comput-
ing the ROM are detailed in Algorithm 2. It is based on
the algorithm proposed in [6]. The differences are we do
not solve the projected GLYAPs, we use low rank factors
and when applicable, we use congruence transform. The
inputs Mc and Mo are matrices containing the constant ma-
trices corresponding to the improper controllability and the
observability Gramian. First, low rank factors Li and Ri
are obtained through a “thin” singular value decomposition
(SVD) of the matrices Mc and Mo. The low rank factor Rp
(Lp) can be obtained via a thin SVD of the matrix Yc (Yo),
the columns of which are the real and imaginary parts of
Yi = Y (jωi) multiplied by the square root of the weighting
factor used in the quadrature. If we use Yi directly, the SVD
will result in a complex valued Rp and Lp, which is not de-
sired. To find a real valued Rp and Lp, we can use the fact
that both Yi and Y ∗i are required to build the Gramians.

Algorithm 2 Algorithm used to find the reduced order
model

1: Input:
[
E A B C D

]
2: Input: Yc and Yo; Samples of Y (jω) corresponding to the

proper controllability and observability Gramian; Yc =[
β0Y0 β1Re(Y1) β1Im(Y1) · · ·

]
; β0 =

√
αi/(2π),

βi =
√
αi/(π), i > 0 // αi: quadrature weights;

3: Input Mc and Mo; Constant matrices corresponding to
the controllability and observability Gramian (Mc =[
M0 M1

]
);

4: Input Sym: If true, B = CT and A and E are symmetric
matrices

5: Input CT : If true, perform reduction using a congruence
transform

6: lp, li: Orders of the proper and improper part of the
reduced system; l = lp + li

7: Output: Reduced model
[
Er Ar Br Cr

]
8: Mc = UΛV T ; //Perform an SVD of Mc

9: Ri = UΛ. //Compute Li in a similar fashion from Mo

if Sym is false;
10: Yc = UyΛyV

T
y ; Rp = UyΛy. //Compute Lp from Yo in

a similar fashion if Sym is false
11: If (Sym):

Lp = RTp ; Li = RTi
12: LpERp = UpΣV

T
p ; LiARi = UiΘV

T
i ;

13: If (CT ):
Vl =

[
RpVp1 RiVi1

]
; where Vp1 = Vp[:, 1 : lp], Vi1 =

Vi[:, 1 : li];
Vl = QrR //QR decomposition
Er = QTr EQr;Ar = QTr AQr;Br = QTr B;Cr = CQr

14: Else:
Wl =

[
LTp Up1 LTi Ui1

]
; where Up1 = Up[:, 1 : lp],

Ui1 = Ui[:, 1 : li]
Vl =

[
RpVp1 RiVi1

]
; where Vp1 = Vp[:, 1 : lp], Vi1 =

Vi[:, 1 : li];
Wl = QlL; Vl = QrR; // QR decompositions for

numerical stability
Er = QTl EQr;Ar = QTl AQr;Br = QTl B;Cr = CQr

This is done as follows.[
Yi Y ∗i

]
=
[√

2Re(Yi)
√

2Im(Yi)
]
× 1√

2

[
1 1
j −j

]
=
[√

2Re(Yi)
√

2Im(Yi)
]
Fy

Note that the multiplying matrix Fy is a unitary matrix.
Therefore if UyΛyV

T
y =

[√
2Re(Yi)

√
2Im(Yi)

]
, then[

Yi Y ∗i
]

= UyΛy(V Ty Fy)

V Ty Fy is clearly a unitary matrix. As seen in Algorithm 2,
Uy and Λy are used to construct the low rank factors Rp and
Lp of the proper controllability and observability Gramians.

Algorithm 2 has two additional inputs Sym and CT . The
input Sym is an indicator of a symmetric system i.e. AT =
A, ET = E and C = BT . In this case LTp = Rp and LTi = Ri
which means Wl = Vl. If E and A are definite matrices, CT
is set to one, indicating a congruence transform can be used.
While it is not possible to guarantee passivity for the general
case, it is possible to use a congruence transform as proposed
in [2] to guarantee passivity when the matrices E and A are



definite matrices, which is the case for VLSI interconnects.
In this case, as explained in Algorithm 2, we can perform
an additional QR decomposition of the right basis Vl and
use the resulting orthogonal basis to perform a congruence
transform resulting in passive reduced order models [1, 2].
The left basis Wl is not used. Therefore, it is not equivalent
to a balanced realization unless the system is symmetric in
addition to A and E being definite matrices.

The RLC network is not a symmetric system. However,
we have observed that good reduced order models are ob-
tained if we perform an orthogonal projection onto the sub-
space spanned by the right basis Vl (containing the eigen-
vectors of PpcE

TPpoE and PicA
TPpoA) and use congruence

transform. It is also seen in [2]. In fact, we have found that
in some cases, like the benchmark MNA1, it gives much bet-
ter results and is numerically more stable. This is explained
as follows. For RLC networks, B = CT . Based on the
structure of the matrices A and E [18], it can be shown that
the Cholesky factors of the observability and controllability
Gramian are related as

LTp = ±
[
−I 0
0 I

]
Rp (19)

depending on whether the input to the network consists of
voltage sources or current sources. A similar result holds for
Li and Ri. Since E is symmetric and block diagonal, LpERp
is also symmetric. The structure of A ensures LiARi is also
symmetric. From Algorithm 2, it is clear that Up = Vp and
Ui = Vi so that Wl and Vl differ due to a sign change of some
of the rows in Rp and Lp. Due to this, it turns out that there
is a substantial overlap between the two subspaces, leading
to good ROMs when congruence transform is used. For the
supersonic inlet benchmark [19], the matrices do not have
this property and the model obtained using a congruence
transform is very poor.

6. RESULTS
The algorithms were implemented in PYTHON and SCIPY

was used for the computations. The parameter Threshold in
Algorithm 2 is set to 10−16. The experiments were run on
a 3.5GHz core-i7 machine. We obtained TBRs of a number
of benchmarks in the sets [18,19]. The CPU times taken to
find the ROM for various benchmarks are given in Table 1.
For each case a ROM was obtained so that its frequency re-
sponse matched that of the full system over a specific range
(in most cases, specified in the documentation of the bench-
marks). The order of the ROM obtained compares well with
the order obtained using other methods. The CPU times in-
dicate that the method is suitable even for relatively large
systems.

We now discuss the results for two of the benchmarks
MNA5 from the set [18] and the supersonic inlet [19] in
more detail. MNA5 is an index 2 system and the super-
sonic inlet has index 1. ROMs for these two benchmarks
have been obtained in [11, 20] using technques that require
explicit construction of the spectral projectors, allowing for
comparison of results. MNA5 has nine ports which results
in an improper subsystem of size 18. Figure 1(a) shows the
magnitude response at port 1 for a ROM that has a proper
subsystem of size 450. The relatively large order is due to
a gradual decay of singular values of the proper subsystem.
The high and low frequency portion can be captured with

Benchmark size index Freq. ROM Time(s)
Rng.(Hz) order

PEEC 1434 0 0− 1010 10 29
Sp.Ind

MNA1 578 2 0− 1015 164 9

MNA5 10913 2 0− 1010 450 69
Supersonic 11,730 1 0-20 27 40

Inlet
xingo3012 20,944 1 0-1000 36 8

Table 1: Frequency range, ROM order and CPU times for various
benchmarks.
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Figure 1: Magnitude response at port 1 for the benchmark MNA5.
The order of the proper subsystem is 450. The order of the ROM
is 468. (b) Order 450 model without explicitly finding the im-
proper subsystem.

a relatively small model order, but capturing all the oscilla-
tions requires a higher order proper subsystem.

Figure 1(b) shows a comparison of the full model and
ROM of size 450 obtained without explicitly accounting for
the improper subsystem. The method is similar to the one
used in [3] (and in spirit, to PMTBR). The resulting ROM
has several finite high frequency poles, but no poles at in-
finity. This results in a poor match beyond 1MHz. Since
methods like multi-point PRIMA and PMTBR do not ex-
plicitly obtain the polynomial part of the transfer function,
the resulting ROMs have high frequency errors [21].

Figure 2(a) contains the absolute value of the error as a
function of frequency. The relatively large error between 0
and 100Hz is due to the reduced size of the proper subsys-
tem. This error reduces as the size of the proper subsystem
is increased. The high frequency error is between 10−10 to
10−8, though there is a tendency to increase beyond 109Hz.
We believe this increase is mainly due to round-off errors
involved in the computation of the reduced order matrices.
Also, the condition number of the matrix (jωEr − Ar) in-
creases rapidly beyond 1011Hz, making the computation of
the reduced order transfer function susceptible to round-off
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0 2 4 6 8 10 12 14
0

0.4

0.8

1.2

1.6

2

log(frequency)

|G
|

Full Model

ROM

Figure 3: Magnitude response of the supersonic inlet benchmark.
The order of the ROM is 27.

errors. A steady increase in the error is also seen [11].
Since we could not find an interconnect benchmark with

index 1, we illustrate the method for the supersonic inlet.
Figure 3 shows the frequency response for the supersonic
inlet. The proper subsystem has order 27 and the improper
subsystem has order one. The match at low frequencies
about upto 100Hz and at very high frequencies is very good.
For a good match at intermediate frequencies, a higher order
proper subsystem is required. The model obtained is much
better than the one obtained in [20].

7. CONCLUSIONS
In this paper, we have presented an efficient algorithm for

obtaining frequency-weighted TBRs including the contribu-
tion of both the proper and improper subsystem. Results
indicate it is accurate and can be used for large systems. It
can be used to get passive models for definite systems. It
is also easily parallelizable. The key step is to estimate the
contribution of the improper subsystem efficiently and ac-
curately. Possible future directions include better sampling
techniques and reduction of round-off errors.
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