Class Notes - Lectures 9 an 10. Scribe: Jadhav Pradeep

September 1, 2018

$1 \quad 20-08-18$

$V_{c}(0)=1 \mathrm{~V}$ find $V_{c}(t)$

$$
\begin{aligned}
I_{i n}(s)+C V_{c}(s) & =\left(\frac{1}{R}+s C\right) V_{c}(s) \\
V_{c}(s) & =\frac{R I_{i n}(s)}{1+s C R}+\frac{R C V_{c}\left(0^{-}\right)}{1+s C R}
\end{aligned}
$$

$V_{c}(s)=$ zero state equation + zero input solution
Zero Input:
that means current source open
Applying KCL

$$
\begin{aligned}
C \frac{d V_{c}}{d t}+\frac{V_{c}}{R} & =0 \\
V_{c} & =V\left(0^{-}\right) e^{\frac{-t}{R C}}
\end{aligned}
$$

Zero state response: The circuit is linear. First find the impulse response.

$$
I_{i n}(t)=\delta(t)
$$

The claim is the entire current $\delta(t)$ must go through the capacitor. Show this by contradiction. If a fraction $F \delta(t)$ of the current goes through the resistor, we have

$$
\begin{aligned}
i_{R} & =F \delta(t) \\
V_{R} & =R F \delta(t) \\
& =V_{c} \\
i_{C} & =C R F \frac{d \delta(t)}{d t}
\end{aligned}
$$

At $\mathrm{t}=0$, if we apply KCL at the node, we have

$$
-\delta(t)+F \delta(t)+C F \dot{\delta}(t)=0
$$

KCL cannot be satisfied as there is no term to cancel $\dot{\delta}(t)$. Only possible solution at $\mathrm{t}=0$ that satisfies KCL is $i_{c}(0)=\delta(t)$. At $\mathrm{t}=0$

$$
\delta(t)=C \frac{d V_{c}}{d t}
$$

Therefore,

$$
V_{c}\left(0^{+}\right)-V_{C}\left(0^{-}\right)=\frac{1}{c} \int_{0^{-}}^{0^{+}} \delta(t) d t
$$

As $V_{C}(0-)=0$

$$
V_{c}\left(0^{+}\right)=\frac{1}{C}
$$

The current impulse dumps charges onto the capacitor \Longrightarrow step changes in the voltages across the capacitor

For $t>0$, once again the input is equal to zero. Therefore, the circuit is as follows

$$
\begin{aligned}
C \frac{d V_{c}}{d t}+\frac{V}{R} & =0 \\
V_{c}(t) & =V_{c}\left(0^{+}\right) e^{\frac{-t}{R C}} u(t) \\
& =\frac{1}{C} e^{-\frac{-t}{R C}} u(t) \\
& =h(t)
\end{aligned}
$$

For any arbitrary input current,

$$
\begin{aligned}
V_{c}(t) & =\int_{0}^{t} h(\tau) I_{i n}(t-\tau) d \tau \\
h(t) & =\frac{1}{C} e^{\frac{-t}{R C}} \frac{\Omega}{s}
\end{aligned}
$$

If $I_{i n}=u(t)$ and $V_{C}\left(0^{-}\right)=2 V$

Zero input solution : $V_{C}(t)=2 e^{\frac{-t}{R C}} u(t)$

Zero state:

$$
\begin{aligned}
V_{c}(t) & =\int_{0}^{\infty} u(t-\tau) \frac{1}{C} e^{\frac{-\tau}{R C}} d \tau \\
& =\int_{0}^{t} \frac{1}{C} e^{\frac{-\tau}{R C}} d \tau \\
& =R\left(1-e^{\frac{-t}{R C}}\right)
\end{aligned}
$$

Total Solution : $V_{c}(t)=2 e^{\frac{-t}{R C}}+R\left(1-e^{\frac{-t}{R C}}\right)$, for $t>0$.
As $t \rightarrow \infty$ capacitor is an open ckt and $V_{c}(t) \rightarrow \mathrm{R} \mathrm{V}$
We can also get the impulse response as the inverse Laplace transform of the transfer function.

$\mathrm{L}(\delta(\mathrm{t}))=1$

$$
\begin{aligned}
V(s)\left(\frac{1}{R}+s C\right) & =1 \\
& =\frac{R}{1+s C R} \\
H(s) & =\frac{V_{c}(s)}{I_{i n}(s)} \\
& =\frac{R}{1+s C R} \\
h(t) & =\frac{1}{C} e^{\frac{-t}{R C}} u(t)
\end{aligned}
$$

2 21-08-18

$V_{c}\left(0^{-}\right)=V_{c 0}$

$$
\begin{aligned}
I_{i n}(s)+C V_{c}(s) & =\left(\frac{1}{R}+s C\right) V_{c}(s) \\
V_{c}(s) & =\frac{R I_{i n}(s)}{1+s C R}+\frac{R C V_{c}\left(0^{-}\right)}{1+s C R} \\
H(s) & =\frac{V_{c}(s)}{I_{i n}(s)} \\
& =\frac{R}{1+s C R} \\
h(t) & =\frac{1}{C} e^{\frac{-t}{R C}} u(t)
\end{aligned}
$$

Zero input Solution :

$$
\begin{aligned}
C \frac{d v_{c}}{d t}+\frac{v}{R} & =0 \\
V_{c}(t) & =V_{c}(0) e^{\frac{-t}{R C}} u(t)
\end{aligned}
$$

Zero State:
$C \frac{d V_{c}}{d t}=\delta(t)$

No current/voltage can be $\propto \dot{\delta}(t)$

If $i_{L} \propto \delta(t), V_{L} \propto \dot{\delta}(t)$ and KCL not satisfied. The only way you can satisfy KCL at $\mathrm{t}=0$ is if $i_{R}=\delta(t)$ and $V_{L}=R \delta(t)=L \frac{d i_{L}}{d t}$

$$
\begin{aligned}
V_{c}(t) & =V_{c 0} e^{\frac{-t}{R C}}+\mathcal{L}^{-1}\left(\frac{I R}{s(1+s C R)}\right) \\
& =V_{c 0} e^{\frac{-t}{R C}}+I R\left(1-e^{\frac{-t}{R C}}\right) t>0
\end{aligned}
$$

As $\mathrm{t} \rightarrow \infty$ capacitor is open ckt $V_{c}(t) \rightarrow I R$.

Natural response (complementary function) + Forced response (particular integral solution)

$$
\left[V_{c 0} e^{\frac{-t}{R C}}-I R e^{\frac{-t}{R C}}\right]+I R
$$

Transient Solution (terms containing time constants of the circuit) + Steady state (IR).

KCL in time domain can be written as

$$
\begin{array}{r}
C \frac{d v_{c}}{d t}+\frac{v_{c}}{R}=I u(t) \\
\frac{d v_{c}}{d t}+\frac{v_{c}}{C R}=\frac{I u(t)}{C}
\end{array}
$$

Homogeneous solution

$$
\begin{equation*}
\frac{d v_{c}}{d t}+\frac{v_{c}}{C R}=0 \tag{1}
\end{equation*}
$$

Guess the solution as $V_{c n}(t)=A e^{\xi t}$ and substitute in equation (1)

$$
\begin{aligned}
A\left(\xi+\frac{1}{R C}\right) e^{\xi t} & =0 \\
\xi & =\frac{-1}{R C}
\end{aligned}
$$

Therefore the natural response $=A e^{\frac{-t}{R C}}$. The solution to the characteristic equation are the natural frequencies of the system.

Particular Solution or the forced solution is the steady state solution after the input is applied. After a long time, since the input is a constant, the guess for the solution is also a constant. Assume $v_{c p}=K$ and substitute guessed solution in differential equation and solve for K . In this case, $K=I R$. Therefore the total solutionis $V_{c}(t)=A e^{\frac{-t}{B C}}+I R$ Solve for A by applying initial conditions at $t=0^{+}$(after the input is applied).

$$
V_{c}\left(0^{+}\right)=A+I R
$$

Since $V_{c}\left(0^{+}\right)=V_{c}\left(0^{-}\right)$, we have $V_{c}(t)=\left(V_{c 0}-I R\right) e^{\frac{-t}{R C}}+I R$.

Question

Assume $I_{i n}(t)=e^{-2 t} u(t), R=1 \Omega, C=1 F, V_{c 0}=1 V$
1 solve in transform domain; draw circuit in s domain, Solve and find inverse transform 2 use $\mathrm{h}(\mathrm{t})$ and convolve with input to get zero state solution

3 Natural + Forced response
Answer
1

$$
\begin{aligned}
V_{c}(s) & =\frac{1}{s+1}+\frac{1}{(s+1)(s+2)} \\
v_{c}(t) & =e^{-t}+\left(e^{-t}+e^{-2 t}\right), t>0
\end{aligned}
$$

$2 \mathrm{~h}(\mathrm{t})=e^{-t}$; convolve with $e^{-2 t}$ to get the output. 3 Natural response : $A e^{-t}$ The forced response requires steady state solution of

$$
\frac{d v_{c}}{d t}+V_{c}=e^{-2 t}
$$

Guess solution as $\mathrm{B} e^{-2 t}$ and substitute in the differential equation. This gives $B=-1$. Therefore, $V_{c}(t)=A e^{-t}-e^{-2 t}$. To apply initial conditions, note that at $t=0^{+}, V_{c}\left(0^{+}\right)=$ 1. Therefore, $A=2$ and $V_{c}(t)=2 e^{-t}-e^{-2 t}$

