Lecture 8: Mesh Analysis

Lecturer: Dr. Vinita Vasudevan

Nodal Analysis (cont...)

Example 1: Given $v_{C}\left(0^{-}\right)=2 V$

Using laplace transform the above circuit will be as follows:

Given $v_{s}(t)=u(t)-u(t-1)$. So, $V_{s}(s)=\frac{1-e^{-s}}{s}$
As we can observe, V_{1}, V_{4}, V_{3} along with reference node form a supernode.So, we need to write KCL only at V_{2}.

$$
V_{2}(s)(2+2 s)-1 \cdot V_{1}(s)-1 \cdot V_{3}(s)-2 s V_{4}(s)=0
$$

If there is a voltage source between nodes i and j, write KCL for supernode. In the above example, $V_{1}, V_{4}, \& V_{3}$ are connected to reference node through voltage source so the supernodes are $[(1)-(\mathrm{R})],[(4)-(\mathrm{R})]$ and $[(3)-(\mathrm{R})]$ We do not write KCL for the reference node so only
write one equation for node 2. Additional equations are

$$
\begin{align*}
& V_{1}=\frac{1-e^{-s}}{s} \tag{1}\\
& V_{3}=\frac{4}{s} \tag{2}\\
& V_{4}=\frac{2}{s} \tag{3}
\end{align*}
$$

Therefore,

$$
V_{2}(s)=\frac{1-e^{-s}}{2 s(s+1)}+\frac{2}{s}
$$

Find $v_{2}(t)$
Note: Remember that the voltage across capacitor is $V_{2}(s)$ not $V_{2}(s)-V_{4}(s)$
Mesh Analysis: Find loops that do not cross a branch (no loop inside the loop) \rightarrow mesh. Mesh currents are unknowns (assume all mesh currents in clockwise direction)

Example 2:

$$
\begin{array}{lr}
\text { Mesh 1: } & -5+7 i_{1}+14\left(i_{1}-i_{2}\right)=0 \\
\text { Mesh 2: } & -12+3 i_{2}+14\left(i_{2}-i_{1}\right)=0
\end{array}
$$

or

$$
\begin{array}{r}
(7+14) i_{1}-14 i_{2}=5 \\
-14 i_{1}+(14+3) i_{2}=12
\end{array}
$$

In the matrix form,

$$
\left[\begin{array}{cc}
21 & -14 \\
-14 & 17
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{c}
5 \\
12
\end{array}\right]
$$

Invert the matrix and solve for $i_{1} \& i_{2}$. Note that the diagonal entries are the sum of the impedances in the loop and the off-diagonal terms are the negative of the impedance between the two loops.

If we have a circuit with N nodes, b branches then the number of meshes will be equal to $b-(N-1)$. Explanation is given below:

with ' N ' nodes you can form a tree (no loops) with $N-1$ branches. Every additional branch you add will form a loop(mesh) with the exiting tree branches. The mesh current in the additional branch is independent of the currents in all other branches; Therefore, the equations are independent

In practice you should never do this.

Example 3:

If there is a current source, form a super mesh by adding the equations for two meshes. Assume voltage across the current source is v_{1}. The equations for mesh 1 and 3 can be written as

$$
\begin{array}{r}
-3+10\left(i_{1}-i_{2}\right)+v_{1}=0 \\
1\left(i_{3}-i_{2}\right)+4 i_{3}+17 i_{3}-v_{1}=0
\end{array}
$$

The equation for supermesh is the sum of the above two equations.

$$
10\left(i_{2}-i_{1}\right)+5 i_{2}+1\left(i_{2}-i_{3}\right)=0
$$

The additional equation needed can be obtained by writing the current source current as the difference of two mesh currents.

$$
i_{3}-i_{1}=5 A
$$

So we have,

$$
\begin{array}{r}
10 i_{1}-(10+1) i_{2}+(17+4) i_{3}=3 \\
-10 i_{1}+(10+5+1) i_{2}-i_{3}=0 \\
i_{1}-i_{3}=-5
\end{array}
$$

or,

$$
\begin{array}{r}
10 i_{1}-(11) i_{2}+(21) i_{3}=3 \\
-10 i_{1}+(16) i_{2}-i_{3}=0 \\
i_{1}-i_{3}=-5
\end{array}
$$

we can write above equations in matrix form

$$
\left[\begin{array}{ccc}
10 & -11 & 21 \\
-10 & 16 & -1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
0 \\
-5
\end{array}\right]
$$

Solve these equations for $i_{1}, i_{2} \& i_{3}$.

